
Migratory Trash Clouds
Emily Ruppel Alexei Colin Brandon Lucia

{eruppel,acolin,blucia}@ece.cmu.edu
Carnegie Mellon University

1. Introduction
Reliable cloud computing is too expensive, as evidenced by
a simple look at a bill from all of the cloud instances spun
up to generate the data for this year’s ASPLOS submission.
The last several decades of Moore’s law have yielded chips
with exponential performance increases and costs dropping
annually, but the need for more computation has arguably
outpaced the improvement in cost per dollar, especially with
the commoditization of computing at the warehouse-scale [1].
A major cost behind commoditized computing at warehouse-
scale is power management, distribution, and storage. Cooling
and power distribution add 50% to 100% to the cost of operat-
ing servers [12, 13]. Moreover, servers require maintenance
of both their software and their hardware, which add addi-
tional cost in peoples’ time and hardware components that
need replacing. Often, the goal of all of this cooling, power
distribution, maintenance, and hardware is to provide uptime,
which translates to availability and reliability for customers.
We observe that availability and reliability are often not impor-
tant and we advocate for jettisoning power system, hardware,
and software support for both.

Instead, we propose a model of commoditized computing
that is opportunistic, unreliable, and sometimes unavailable,
but incurs little of the cost associated with conventional com-
modity bulk computing solutions. We present a design for a
computing system that implements this model using a geo-
distributed collection of low-reliability clusters of discarded,
then reclaimed hardware (e.g., old smartphones), powered
through harvested renewable energy sources, like the sun. Re-
purposing outdated hardware minimizes the upfront cost of the
computing system and reduces the environmental impact of the
discarded goods. Using a re-newable power supply minimizes
recurring operating costs, however presents the challenge of
computing on an intermittently-powered processor. To ensure
forward progress and guard against unrecoverable data cor-
ruption due to arbitrary power failures, the runtime software
will leverage existing techniques for interruptible computation,
such as two-phase commit [7], logging [14], and programming
techniques from intermittent computing [10, 3, 11, 2, 4].

Each cluster is (sporadically) connected to other clusters and
potentially to the Internet. Inputs and outputs for the computa-
tion on the cluster are transmitted either directly to individual
nodes via their existing cellular modems, or through a per-
cluster gateway with a specialized radio (e.g., LoRa [5]). Low
power, long range communication [5] between clusters allows
workloads to migrate to clusters with greater energy availabilty.
To eliminate the high energy cost of high-bandwith communi-
cation, however, the workload can follow energy availability
not by migrating to a different cluster but by physically mov-
ing the cluster itself towards the energy source. We envision
mobile clusters as a payload aboard a perpetually aloft, long-
haul solar drone glider. The drone can be programmed to
fly above the clouds and follow the sun, providing best-effort
continuous availability for the cluster.

Migratory Trash Clouds provides a best-effort guarantee to

Figure 1: Migratory Trash Clouds components

the customer, because clusters can only compute when a power
source is available. Assuming solar power, Migratory Trash
Clouds provide only the guarantee that a job will complete
eventually, as the weather permits. Migratory Trash Clouds fill
a similar niche to the one filled by Amazon EC2 Spot instances:
compute power is transiently available when resources are
available and when resources disappear, the compute power
disappears with them. In the case of Migratory Trash Clouds,
the limiting resource is the energy that is extractable from the
environment.

2. System Overview
Migratory Trash Clouds are a distributed collection of compute
clusters, composed out of trash smartphones that were thrown
away or donated, powered by a single solar panel with minimal
power conditioning circuitry (e.g., voltage conversion and a
decoupling super-capacitor). The clusters may be stationary
or mounted on a solar-powered flying drone that can follow
the energy source. Each cluster is composed of tens of devices
powered directly by harvested solar energy and equipped with
wireless radios for wifi, 4G, and LoRa. Within a cluster, one
device is designated as cluster manager and monitors status
information about the other local processors and the cluster’s
energy availability.

Figure 1 shows the physical design of a Migratory Trash
Clouds cluster. A cluster features a 100W solar panel affixed
to about 30 smart phones connected via a WiFi mesh and
4G and LoRa radios for long-range wireless communication.
We assume that each phone is a device circa 2016 such as a
Samsung Galaxy S6 with four ARM Cortex-A57 at 2.1GHz
and four Cortex-A53 cores at 1.5GHz, 3GB of RAM and
a 64GB off-chip flash memory. Each device is capable of
roughly 10 GFlops [9] at a power consumption of around 2W.
Performance per Watt of a Migratory Trash Clouds cluster is
not competitive with emerging devices like the 1 TFLOP per
15W in the NVidia Jetson TX2 “Parker”, however the cost
of a cluster, i.e. a set of upcycled smartphones, is competi-
tive. Assuming 2W per device and 77% efficiency of voltage
conversion, a 100W solar panel delivers 66W, sufficient to
continuously power 33 devices. In total, a cluster provides
around 330 GFlops of performance for 66W of “free” power,
collected from the environment.

0 200 400 600 800 1000 1200 1400 1600
Area (sq in)

0

100

200

300

400

500

600

G
FL

O
PS

Performance vs Area

(a) Area

0 5 10 15 20 25 30 35 40
Weight (lb)

0

100

200

300

400

500

600

G
FL

O
PS

Performance vs System Weight

(b) weight

Figure 2: Migratory Trash Clouds area and weight per FLOP

To gather the “free” power, however, a fixed cost of a solar
panel must be incurred. A high-end 130W panel costs approx-
imately $300, and its cost is amortized across all elements in
the cluster. We anticipate the panel cost and the device cost
to dominate the price of a cluster. The panel also dominates
area and volume of the cluster, occupying approximately 7.3
square feet. In our design, compute and radio hardware is
situated underneath the solar panel, as the total area of 33
smart phones is approximately 4.1 square feet. The system
weight must be minimized for mobile clusters, to fit within the
payload of a solar-powered drone. The entire system weight
is approximately 30 pounds, given 0.2 lb (100g) per phone if
the battery is removed. Figure 2 shows the design space of
performance versus cluster area and cluster weight based on
the dimensions of commercially available solar panels [15].

3. Interruptible Computation
Intermittent computing addresses challenge of continuing com-
putation across unpredictable frequent reboots in simple, em-
bedded processors. Intermittent programming models work
because they ask the programmer to write their program in
idempotent tasks that are amenable to frequent restarts with
low overhead [10, 3, 11, 16]. Intermittent computing follows
in the footsteps of a long history of operating systems and
databases work that developed a diversity of programming and
execution models for various reliability benefits (e.g., transac-
tions [8]). Recent work on Apache Spark [6] showed that, as
in tiny intermittent systems, large-scale systems can also reap
the benefits of idempotent computational tasks, making migra-
tion simple, allowing for arbitrary restarting, and eliminating
often costly side effects by construction. Software in Migra-
tory Trash Clouds can leverage these ideas to ensure reliable
operation despite unpredictable weather and unreliable power.
Moreover, with batteries removed (for weight reduction in
mobile clusters) devices will operate intermittently, requiring
software techniques for reliability and interruptibility.

4. Communication
Devices in a cluster must communicate with one another to
compute and must communicate with off-cluster devices to
collect inputs and produce outputs. Within a cluster, devices
communicate using a WiFi mesh. Communication over long
distances is a challenge because existing low power WANs
have low bandwidth. For instance, LoRa [5] radios have line-
of-sight (LOS) transmission range up to 15km, but data rates
of only 50 kbps. The advantage of LoRa radios is that they
add little additional power: transmit power is approximately
0.25W at maximum power and receive power is 0.03W [5].

Figure 3: A Migratory Trash Clouds compatible drone

An alternative to LoRa is to use 4G radios, which have long
range and high bandwidth. A key drawback to 4G, however, is
the need for a per-device subscription for access to terrestrial
infrastructure. We advocate for an alternative solution that
does not require pay-per-byte infrastructure.

To avoid prohibitively low bandwidth and per-byte band-
width costs, we envision deploying quad-copter data drones as
a “station wagon full of hard drives” in the sky. A data drone
can deliver a batch of input or collect a batch of output from an
mobile (glider-attached) or stationary cluster via ad hoc wifi
mesh at high data rate. Data drones are more efficient than
radio when the total energy, money, and time cost required
to transmit a workload via LoRa or 4G exceeds the cost of
launching a drone. Quantitatively comparing these costs is an
open research question.

5. Energy source tracking
A mobile Migratory Trash Clouds cluster can compute per-
petually, by directing its carrier drone to follow the sun and
stay above the cloud cover. During daylight hours the mobile
clusters will always have access to energy. Each glider ensures
that it always operates during daylight by flying west at the
rate of the movement of the sun to ensure constant access to
energy. With a well-planned trajectory, migration toward the
power source allows a cluster to compute continuously.

6. Concluding Research Questions
Migratory Trash Clouds raises several interesting research
questions that require additional exploration to scale out en-
ergy efficient, low cost computation.
• When is communication between nodes advantageous in a

distributed system with very low data rate communication?
• How can cluster management be made robust to frequent

failures in a highly energy constrained and resource limited
settting?

• Can continuation strategies used in cloud computing be
applied to improve the reliability of a cluster with unpre-
dictable energy availability?

• Is continuous flight and computing possible with state-of-
the-art solar drones?

• When are data drones beneficial? Is there a case where data
rate, cost, and latency demand physical cluster access?

References
[1] Luiz Andre Barroso and Urs Hoelzle. The Datacenter As a Computer:

An Introduction to the Design of Warehouse-Scale Machines. Morgan
and Claypool Publishers, 1st edition, 2009.

[2] Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P Sample.
An energy-interference-free hardware-software debugger for intermit-

2

tent energy-harvesting systems. ACM SIGPLAN Notices, 51(4):577–
589, 2016.

[3] Alexei Colin and Brandon Lucia. Chain: tasks and channels for reliable
intermittent programs. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 514–530. ACM, 2016.

[4] Alexei Colin, Emily Ruppel, and Brandon Lucia. A reconfigurable
energy storage architecture for energy-harvesting devices. In Proceed-
ings of the 51st International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 2018.

[5] Adwait Dongare, Craig Hesling, Khushboo Bhatia, Artur Balanuta,
Ricardo Lopes Pereira, Bob Iannucci, and Anthony Rowe. Openchirp:
A low-power wide-area networking architecture. In Pervasive Comput-
ing and Communications Workshops (PerCom Workshops), 2017 IEEE
International Conference on, pages 569–574. IEEE, 2017.

[6] The Apache Software Foundation. Lightening-fast cluster computing.
https://spark.apache.org/, 2017.

[7] Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM
Trans. Database Syst., 31(1):133–160, March 2006.

[8] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1st edition, 1992.

[9] Florence Ion. Benchmarked: The galaxy s6 is the fastest android
phone. period. https://www.greenbot.com/article/2904384/
benchmarked-the-galaxy-s6-is-the-fastest-android-phone-period.
html, 2015.

[10] Brandon Lucia and Benjamin Ransford. A simpler, safer programming
and execution model for intermittent systems. In ACM SIGPLAN
Notices, volume 50, pages 575–585. ACM, 2015.

[11] Kiwan Maeng, Alexei Colin, and Brandon Lucia. Alpaca: Intermittent
execution without checkpoints. In Proceedings of the 2017 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. ACM, 2017.

[12] David Meisner, Brian T. Gold, and Thomas F. Wenisch. Powernap:
Eliminating server idle power. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XIV, pages 205–216, New York, NY,
USA, 2009. ACM.

[13] Justin Moore, Jeff Chase, Parthasarathy Ranganathan, and Ratnesh
Sharma. Making scheduling "cool": Temperature-aware workload
placement in data centers. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ATEC ’05, pages 5–5, Berkeley,
CA, USA, 2005. USENIX Association.

[14] Mendel Rosenblum and John K Ousterhout. The design and implemen-
tation of a log-structured file system. ACM Transactions on Computer
Systems (TOCS), 10(1):26–52, 1992.

[15] Inc SolarTech Power. F-series solar panels. http://www.
solartechpower.com/fseries.html, 2018.

[16] Joel Van Der Woude and Matthew Hicks. Intermittent computation
without hardware support or programmer intervention. In Proceedings
of OSDI’16: 12th USENIX Symposium on Operating Systems Design
and Implementation, page 17, 2016.

3

https://spark.apache.org/
https://www.greenbot.com/article/2904384/benchmarked-the-galaxy-s6-is-the-fastest-android-phone-period.html
https://www.greenbot.com/article/2904384/benchmarked-the-galaxy-s6-is-the-fastest-android-phone-period.html
https://www.greenbot.com/article/2904384/benchmarked-the-galaxy-s6-is-the-fastest-android-phone-period.html
http://www.solartechpower.com/fseries.html
http://www.solartechpower.com/fseries.html

	Introduction
	System Overview
	Interruptible Computation
	Communication
	Energy source tracking
	Concluding Research Questions

