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ABSTRACT
Performance of single-machine, shared memory graph process-
ing is affected by expensive atomic updates and poor cache lo-
cality. Data duplication, a popular approach to eliminate atomic
updates by creating thread-local copies of shared data, incurs ex-
treme memory overheads due to the large sizes of typical input
graphs. Even memory-efficient duplication strategies that exploit
the power-law structure common to many graphs (by duplicating
only the highly-connected "hub" vertices) suffer from overheads
for having to dynamically identify the hub vertices. Degree Sorting,
a popular graph reordering technique that re-assigns hub vertices
consecutive IDs in a bid to improve spatial locality, is effective for
single-threaded graph applications but suffers from increased false
sharing in parallel executions.

The main insight of this work is that the combination of data
duplication and Degree Sorting eliminates the overheads of each
optimization. Degree Sorting improves the efficiency of data du-
plication by assigning hub vertices consecutive IDs which enables
easy identification of the hub vertices. Additionally, duplicating the
hub vertex data eliminates false sharing in Degree Sorting since
each thread updates its local copy of the hub vertex data. We eval-
uate this mutually-enabling combination of power-law-specific
data duplication and Degree Sorting in a system called RADAR.
RADAR improves performance by eliminating atomic updates for
hub vertices and improving the cache locality of graph applications,
providing speedups of up to 165x (1.88x on average) across different
graph applications and input graphs.
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1 INTRODUCTION
Graph processing is an important category of data-intensive work-
loads with many high-value applications including social network
analysis, path-planning, graph learning, data mining, and semi-
supervised learning [1, 12, 17]. In the past, large graphs have been
processed using distributed systems and datacenter scale systems [14,
19, 26]. More recently, graph processing has seen a shift away from
distributed systems as increasing main memory capacities and core
counts enable processing graphs with hundreds of millions of ver-
tices and billions of edges using a single machine. Recent work
demonstrated that when a graph can fit in a single machine’s main
memory, distributed graph processing frameworks are less efficient
than processing on a single machine [21]. The viability of efficient
single-machine graph processing allows computing at the edge [29],
obviating the need to transmit graph data to a datacenter or to
maintain a complex distributed system.

Achieving high performance for parallel graph processing on
a single machine requires addressing several unique challenges.
Performance characterizations on server-class processors have re-
vealed that graph applications are bottlenecked by poor cache lo-
cality and expensive atomic instructions [4, 6, 7, 35]. Graph appli-
cations exhibit an irregular memory access pattern that reduces
cache locality and requires the use of atomic instructions to ensure
correctness in a parallel execution. These atomic instructions im-
pose a significant performance penalty in graph applications [6].
The unique characteristics of graph processing make it challenging
to employ optimizations targeting a reduction in expensive main
memory accesses and atomic instructions.

One common strategy for eliminating atomic instructions is to
create per-thread copies of the shared data (which we refer to as
data duplication). Data duplication effectively eliminates the cost
of atomics by forcing a thread to apply updates only to its private
copy of the vertex data, and periodically combining threads’ copies.
Data duplication is effective for small data structures with regular
access patterns, but incurs high overheads for graph applications.
Duplicating the entire vertex data across threads incurs an extreme
memory overhead: a graph with 100 Million vertices processed by
32 threads suffers an untenable duplication overhead of 12.8GB,
assuming 4 bytes per vertex. The overhead eliminates already scarce
locality in the Last Level Cache (LLC), increasing DRAM accesses
that degrade performance.

A more memory-efficient implementation of data duplication
might exploit the power-law degree distribution common to many
input graphs. A power-law graph contains a small fraction of "hub"
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vertices with disproportionately higher connectivity than most
vertices in the graph. A vertex with higher degree is likely to be
accessed and updated more frequently than lower degree vertices.
Consequently, when processing a power-law graph, a majority of
atomics update the hub vertices. We propose that a more efficient
data duplication approach should duplicate hubs only, eliminat-
ing most atomics while avoiding the memory bloat of full-graph
duplication. A lingering inefficiency in such a data duplication im-
plementation is the cost of identifying whether a vertex is a hub or
not. Data duplication for power-law graphs suffers from a critical
limitation: a hub may reside anywhere in the graph’s vertex array,
requiring the memory-efficient data duplication variant to pay a
cost (to determine whether a vertex is a hub) on every update.

An orthogonal approach to optimizing graph computations is
to reorder vertex data, ensuring that vertices likely to be accessed
together are stored together to expose spatial locality. Degree Sort-
ing assigns vertex IDs in decreasing order of vertex degrees, which
consecutively orders hub vertices at the start of the vertex array.
Hub vertices are likely to be accessed together because of their high
connectivity and Degree Sorting improves spatial locality of hub
accesses [3, 34, 37], improving performance. Despite the locality
improvement, Degree Sorting suffers from a critical limitation: plac-
ing the hub vertices in the same cache line leads to false sharing
when different processors access different hubs in the same cache
line. False sharing increases cache coherence activity and degrades
performance.

In this work we observe that there is an important synergy
between reordering and duplication optimizations for power-law
graph data. These optimizations are mutually enabling. Degree Sort-
ing optimizes power-law-specific data duplication because detect-
ing a hub vertex has a negligible cost if the input graph’s vertices
are sorted by their degree. A vertex is identifiably a hub if it is at the
start of the vertex array. Data duplication optimizes Degree Sorting
because duplicating hub vertices eliminates the false sharing for
hub vertices and its attendant coherence cost and performance
degradation.

In this paper, we thoroughly motivate and describe RADAR 1, a
system that combines duplication and reordering into a single graph
processing optimization, reaping the benefits and eliminating the
costs of both. RADAR improves performance of graph applications
by reducing the number of atomic updates and improving locality
of memory accesses, providing speedups of up to 165x (1.88x on av-
erage) across widely varied graph applications and power-law input
graphs. RADAR is an alternative to the state-of-the-art optimization
for eliminating the cost of atomics in graph applications, which is
to perform the Push-Pull direction-switching optimization [4, 7, 30].
Push-Pull optimization avoids atomic instructions in graph applica-
tions by redundantly processing edges, trading off work-efficiency
for a reduction in atomics. RADAR offers three key benefits over
push-pull optimization. First, unlike Push-Pull, RADAR does not
compromise work-efficiency in a graph algorithm. Instead, RADAR
leverages power-law graph structure to eliminate atomic updates
for hub vertices. Second, RADAR combines the benefits of data du-
plication’s reduction in atomics and Degree Sorting’s improvement
1 Due to the mutually enabling combination of Duplication and Reordering, we
name our system RADAR (Reordering Assisted Duplication/Duplication Assisted
Reordering)

in spatial locality. Third, and often most critically, RADAR requires
half of the memory footprint of Push-Pull, because RADAR need not
maintain an in-memory representation of in-edges and out-edges,
as required in Push-Pull. The reduced memory requirement allows
RADAR to process a substantially larger input graph than push-pull,
on a single machine with a fixed memory capacity.

In summary, we make the following contributions in this work:
• We identify the challenges of implementingmemory-efficient
data duplication for power-law graphs and (to the best of
our knowledge) provide the first implementation of a power-
law-specific data duplication strategy for shared-memory
graph processing (Section 4)

• We show that by combining the mutually beneficial opti-
mizations of data duplication and Degree Sorting, RADAR
achieves speedups of up to 165x (1.88x on average) across
different applications and input graphs (Section 7).

• We compare RADAR’s performance to the push-pull opti-
mization and identify the scenarios where each optimization
provides the best performance.

2 BACKGROUND: GRAPH PROCESSING
Our work is motivated by the performance limitations imposed on
shared memory parallel graph processing by atomic updates and
poor cache locality. This section provides an overview of shared
memory graph processing by describing standard graph data struc-
tures and algorithms, as well as common optimizations. While
there is diversity in the optimizations employed by different graph
processing frameworks [28], shared memory frameworks share
similarities in the data structure used to represent graphs, graph
traversal patterns, and optimizations commonly used to eliminate
atomic accesses.
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Figure 1: CSR representation of a directed graph

Compressed Sparse Row representation.Most shared mem-
ory frameworks represent a graph using the Compressed Sparse Row
(CSR) format due to the format’smemory efficiency [4, 25, 30, 33, 36].
Figure 1 illustrates a graph in the CSR format. The CSR format uses
two arrays to represents a graph’s edges (sorted by edge source/des-
tination ID). The Coordinates Array (CA) contiguously stores the
neighbor of each vertex in the graph. The Offsets Array (OA) stores
each vertex’s starting offset into the Coordinates Array. To access
the neighbors of vertex i , a program accesses the ith entry in OA
to find vertex i’s first neighbor in the CA. The OA allows quick esti-
mation of vertex degree: vertex i’s neighbor count is the difference
between entries i + 1 and i in the OA. To represent a directed graph,
an algorithm or framework may store two CSRs (e.g., Figure 1), one
for outgoing neighbors and another for incoming neighbors.

Graph Traversal Pattern. Graph applications process an in-
put graph by iteratively visiting its vertices until a convergence
criterion is satisfied. During an iteration, an application may either



Algorithm 1 Typical graph processing kernel

1: par_for src in Frontier do
2: for dst in out_neiдh(src) do
3: AtomicUpd (vtxData[dst]), auxData[src])

process all the vertices or may process a subset of vertices called the
frontier. Also, within each iteration, vertices belonging to the next
iteration’s frontier are identified using application-specific logic.
Algorithm 1 shows an arbitrary graph processing kernel that tra-
verses an input graph, applying an update to vertex data (vtxData)
based on auxiliary data (auxData). The kernel processes the vertices
in a frontier in parallel (line 1) and accesses the neighbors of each
vertex in the frontier (line 2). Note, that the neighbors of a vertex
are identified using the contents of the Coordinates Array (CA) of
the CSR. The update operations applied to elements of vtxData are
typically associative and commutative.

The kernel illustrates key performance challenges faced by shared
memory graph processing frameworks. First, the kernel must use
expensive atomic instructions to synchronize each update to an en-
try in the vertex data array (vtxData in line 3). The updates require
synchronization because multiple source vertices can share the
same destination vertex as a neighbor, causing concurrent updates
of shared neighbors. Second, accesses to vtxData in line 3 suffer
from poor cache locality. The sequence of accesses to the vtxData
array is determined by the contents of the Coordinates Array (CA)
of the CSR. The vtxData accesses are unlikely to have spatial or
temporal locality because each access is an indirect lookup that
depends on graph structure and vertex ordering (both of which can
be arbitrary).

Algorithm 2 Pull version of graph kernel

1: par_for dst in G do
2: for src in in_neiдh(dst) do
3: if src in Frontier then
4: Upd (vtxData[dst]), auxData[src])

Push-Pull direction-switching. Shared-memory graph pro-
cessing frameworks often use an optimized graph traversal pattern
called a pull phase execution [4, 7, 30] to eliminate atomic updates.
The typical graph processing kernel shown in Algorithm 1 can
be classified as a push phase execution since a vertex is processed
by iterating over its outgoing neighbors, “pushing” the value of a
vertex to its out-neighbors. In contrast, a pull phase execution pro-
cesses a vertex by iterating over its incoming neighbors, “pulling”
the value from all of its in-neighbors (shown in Algorithm 2). The
pull phase requires no atomic updates because only one thread
updates a vertex. However, the elimination of atomics comes at
the cost of processing redundant edges. For example, for the graph
shown in Figure 1 if the Frontier consists of vertices 0 and 2, then
a push phase execution would iterate over outgoing edges from the
two vertices and update vtxData[3] and vtxData[4] using atomic
instructions. In contrast, a pull phase execution would iterate over
incoming edges of every vertex (lines 1 and 2 of Algorithm 2) and
check if the source vertex of each incoming edge belongs to the
Frontier (i.e. whether the source vertex is 0 or 2). When an edge
connected to Frontier vertices is discovered, a pull phase execu-
tion updates vtxData without using atomic instructions. However,

a pull phase execution eliminates atomics updates by inspecting
more edges compared to the push phase execution (7 versus 4 in
our example) and, hence, is work-inefficient. The pull phase trades
off work-efficiency in order to eliminate atomic updates in graph
applications and has shown to be effective only when the frontier
contains amajority of the vertices (i.e., the frontier is dense) [4, 7, 30].
Therefore, graph frameworks employ Push-Pull direction-switching
to dynamically switch between push and pull phases only using
the pull phase when the frontier is dense, using push otherwise.
Consequently, the Push-Pull optimization is required to store two
CSRs in memory – one for tracking outgoing neighbors (used in
push phase) and another for tracking incoming neighbors (used
in pull phase). A critical limitation of the Push-Pull optimization
is that it has double the memory footprint compared to a baseline,
push phase execution.

3 THE CASE FOR RADAR
We demonstrate the extent to which atomic updates impact the
performance of parallel graph applications. We then show the ten-
sion between locality improvements from graph reordering (e.g.,
Degree Sorting) and a commensurate performance degradation
due to false sharing in a parallel execution. These costs motivate
RADAR, which synergistically combines duplication and reorder-
ing to reduce atomic updates and improve cache locality of vertex
data accesses.

3.1 Atomics impose significant overheads
Atomic instructions impose a significant penalty on graph applica-
tions [6, 35]. Compared to other kinds of graphs, the performance
cost of atomic updates is higher while processing power-law graphs
because the highly-connected hub vertices are frequently updated
in parallel. To motivate RADAR, we experimentally measured the
performance impact of atomic updates (Section 6 describes our
experimental setup in detail). We compare the performance of a
baseline execution with a version that replaces atomic instructions
with plain loads and stores. To ensure that the latter version pro-
duces the correct result and converges at the same rate as the
baseline, we execute each iteration twice: once for timing without
atomics, and once for correctness with atomics (but not timed).
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Figure 2: Speedup from removing atomic updates

Figure 2 shows the impact of atomic updates for several ap-
plications processing PLD, a power-law graph. The data show the
performance potential of eliminating atomic updates in different ap-
plications. Pagerank-Delta (PR-Delta) and Betweenness-Centrality
(BC) see a large improvement, indicating a high cost due to atom-
ics. Breadth-first Search (BFS) and Radius Estimation (Radii) see
a smaller improvement. These two algorithms allow applying the
Test-and-Test-and-Set optimization [27], which avoids atomics for



already-updated vertices in the baseline. Across the board, the
data show the opportunity to improve performance by eliminating
atomic updates.

3.2 Data duplication for power-law graphs
Data duplication is a common optimization used in distributed
graph processing systems [19], where vertex state is replicated
across machines to reduce inter-node communication. Recent dis-
tributed graph processing systems [10, 14, 26] have leveraged the
power-law degree distribution, common to many real world graphs,
to propose data duplication only for the highly connected hub
vertices. Duplicating only the hub vertex data improves memory
efficiency by incurring the overheads of duplication only for the
small fraction of hub vertices (that contribute the most to inter-
node communication). In this work, we explore data duplication
of hub vertices in power-law graphs (henceforth referred to as
HUBDUP) in the context of single node, shared memory graph
processing to reduce inter-core communication caused by atomic
updates. Specifically, we create thread-local copies of hub vertex
data which allows threads to independently update their local copy
of the vertex data without using atomic instructions. Later, threads
use a parallel reduction to combine their copies, producing the
correct final result.

The hub-specific duplication strategies proposed in recent dis-
tributed graph processing systems [10, 14, 26] cannot be directly
applied to the shared memory setting because of fundamental dif-
ferences in the primary performance bottlenecks. The primary
bottleneck in distributed graph processing is expensive inter-node
communication [28]. To reduce communication over the network,
distributed graph processing systems require sophisticated prepro-
cessing algorithms to effectively partition a graph’s edges across
nodes in addition to duplicating hub vertex data. The high prepro-
cessing costs of these algorithms are harder to justify in the context
of shared memory graph processing due to the relatively low cost
of communication (between cores within a processor). The primary
bottleneck in single node, shared memory graph processing is the
latency to access main memory (DRAM) [28, 37]. Therefore, effi-
cient data duplication for shared memory graph processing must
ensure that the increased memory footprint from duplication can
be serviced from the processor’s Last Level Cache (LLC). Other-
wise, the performance benefits of eliminating atomic updates would
be overshadowed by an increase in DRAM accesses. The limited
capacity of typical LLCs (order of MBs) allows shared memory
graph processing frameworks to duplicate far fewer vertices than
distributed graph processing systems.

Despite the significant overhead imposed by atomic instructions
(Figure 2), popular shared memory graph processing frameworks [4,
25, 30, 33] do not use data duplication (including HUBDUP). Achiev-
ing high performance from HUBDUP requires careful implemen-
tation to avoid excessive overheads. A key challenge facing any
HUBDUP implementation is that a hub vertex may initially have
an arbitrary position in the vertex data array. A memory-efficient
HUBDUP implementation must dynamically identify whether a
vertex being updated is a hub or not at runtime. Consequently, a
HUBDUP implementation will remain sub-optimal; while HUBDUP
successfully eliminates atomics for hubs, its incurs a run time cost
to identify those hubs.

3.3 Graph reordering for locality
Graph applications are notorious for their poor cache locality as
evident from the large body of work focusing on optimizing locality
for graph processing [5, 23, 34, 35, 37]. Reordering the vertices in a
graph in decreasing degree order (which we refer to as Degree Sort-
ing) is one such optimization that exploits the power-law degree
distribution. Degree Sorting causes the vertices with the highest
degrees (i.e., hubs) to be assigned at the start of the vertex data
array. An access to a hub vertex’s data also caches the data for the
other hubs in the same cache line. Bringing more hubs into the
cache increases the likelihood that future requests to hub vertices
hit in the cache, improving performance. Degree Sorting is appeal-
ing because it is a preprocessing step that requires no modification
to application code. While more sophisticated graph ordering tech-
niques exist [8, 15, 34], Degree Sorting has the benefit of having
a relatively low preprocessing overhead. The high preprocessing
cost of other approaches negates the benefit of reordering [2, 3].
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Figure 3: Performance improvements from Degree Sorting:
Reordering improves performance of a single-threaded execution but
fails to provide speedups for parallel executions.

Figure 3 shows the performance improvements offered by re-
ordering vertices in decreasing in-degree order while processing
the PLD power-law graph, for different thread counts. In a single-
threaded execution, Degree Sorting’s locality optimization effec-
tively improves performance. However, in a parallel execution with
56 threads, Degree Sorting causes a slowdown. False sharing causes
the parallel performance degradation, because Degree Sorting lays
the most commonly accessed vertices (hubs) consecutively in mem-
ory. As threads compete to access the cache lines containing these
vertices, they falsely share these lines, suffering the latency over-
head of cache coherence activity Single-threaded executions show
that Degree Sorting is effective, but in a highly parallel execution
the cost of false sharing exceeds the benefit of Degree Sorting,
leading to performance loss.

3.4 Benefits of combining duplication and
reordering

The previous sections show that optimizations targeting a reduction
in atomic updates and improvement in cache locality both have
limitations. HUBDUP reduces atomic updates but incurs a cost
to detect the hub vertices at runtime. Degree Sorting improves
cache locality for a single-threaded execution, but suffers from false
sharing in a parallel execution.

Our main insight in this work is that combining the two opti-
mizations — i.e., HUBDUP on a degree-sorted graph — alleviates
the bottleneck inherent in each. Reordering the input graph in de-
creasing degree-order locates hubs contiguously in the vertex array,
enabling a HUBDUP implementation to identify the hub vertices at



a lower cost. Duplicating vertex data for hubs eliminates the false-
sharing incurred by Degree Sorting, because each thread updates a
thread-local copy of hub vertex data. Table 1 shows an overview of
existing techniques with their strengths and weaknesses, including
RADAR, the technique we develop in this work.
Optimization Summary Strengths/Weaknesses
HUBDUP Duplicating only hub data + No atomics for hub vertices

(in original graph order) - Cost for identifying the hubs
Degree Sorting Reorder graph in decreasing + Improves cache locality

degree order (no app change) - Introduces false sharing
RADAR Duplicating only hub data on a de-

gree sorted graph
+ No atomics for hubs (with easy hub de-
tection)
+ Improves cache locality (no false shar-
ing on hub updates)

Table 1: Summary of optimizations

4 RADAR: COMBINING DUPLICATION AND
REORDERING

RADAR combines the mutually-beneficial HUBDUP and Degree
Sorting optimizations, providing better performance compared to
applying either optimization in isolation. To motivate RADAR’s de-
sign, we first describe the space of HUBDUP designs, characterizing
the fundamental costs associated with any HUBDUP implementa-
tion. We then discuss how Degree Sorting reduces the inefficiencies
of HUBDUP. Finally, we discuss how RADAR combines reduction
in atomic updates with improvements in cache locality to improve
performance of graph applications.

4.1 Sources of inefficiency in HUBDUP
Power-law graphs present an opportunity to develop memory-
efficient data duplication implementations (HUBDUP). Despite
the low memory overhead of duplicating hub vertex data only,
HUBDUP’s performance is sub-optimal. Specifically, implementing
HUBDUP requires addressing four key challenges.
Challenge #1: Locating hub vertices.Hub vertex data may be ar-
bitrarily located in the vertex data array, because HUBDUP makes
no assumption about input graph ordering. A HUBDUP imple-
mentation must identify whether a vertex is a hub. One possible
implementation is to inspect the entire graph in advance and store
an index (i.e., a bitvector) of hub vertex locations.
Challenge #2: Detecting hub vertices. HUBDUP limits memory
overheads by duplicating only hub vertex data. A HUBDUP imple-
mentation must dynamically check whether a vertex is a hub or not;
hub updates modify a thread-local copy, while non-hub updates
atomically update the vtxData array. An implementation can use
the bitvector mentioned above to efficiently make this hub check
on every vertex update at run time, as illustrated in Figure 4a
Challenge #3: Updating the thread-local hub copies. Hub up-
dates inHUBDUP are applied to a thread-local copy of the hub’s data
and do not use atomic instructions. A memory efficient HUBDUP
implementation must store hub duplicates contiguously in memory
(e.g., LocalCopies in Figure 4b). However, packing hub vertices in
thread-local copies precludes using a hub vertex’s ID as an index
to the thread-local copies. HUBDUP requires mapping a hub ver-
tex’s ID to its index in the thread-local copies (as in Figure 4b). The
mapping function must be called on every hub update as shown in
Figure 4a.
Challenge #4: Reducing updated hub copies. At the end of an
iteration, partial hub updates accumulated in thread-local copies

Update
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2) Update local copy without atomics 
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vtxData
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(b) Gathering hub
vertex updates in
thread-local copies

LocalCopies[0] LocalCopies[N]
. . .

Reduce

vtxData

Inv_Map

(c) Reduction of values in thread-local
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Figure 4: HUBDUP design: Essential parts of any HUBDUP imple-
mentation. Hub vertices of the graph are highlighted in red.

must be reduced and stored in the hub’s entry in the vtxData array
(Figure 4c). Locating a hub copy’s original location in the vertex
array requires an inverse mapping from its index in the array of
thread-local copies back to its index in the original vertex data
array.

A keymotivation for RADAR is achieving the benefits of HUBDUP
without incurring the costs of the above challenges.

4.2 Degree Sorting improves HUBDUP
Degree Sorting improves HUBDUP by reducing the costs associated
with each challenge. Most of the cost of HUBDUP stems from
the arbitrary location of hubs in the vertex data array. Degree
Sorting solves this problem by arranging vertices in decreasing in-
degree order. A degree-sorted graph avoids the first two challenges:
identifying a hub requires simply checking that its index is lower
than a constant threshold index marking the boundary of hub
vertices. Indexing thread-local copies is also simple because hubs
are contiguous. A hub’s vertex ID can be used to directly index into
the thread-local copies. Therefore, Degree Sorting eliminates the
cost of building and accessing the maps and inverse maps from
challenges #3 and #4.

4.3 HUBDUP improves Degree Sorting
Degree Sorting improves cache locality by tightly packing high-
degree hubs in the vertex data array. Figure 3 demonstrates the
benefit of locality improvements for single-threaded graph applica-
tions. However, contiguity of hubs causes an unnecessary increase
in costly false sharing because different threads frequently read and
update the small subset of cache lines containing hubs. Thread-local
hub copies in HUBDUP avoid false sharing because a thread’s hub
updates remain local until the end of an iteration.

4.4 RADAR = HUBDUP + Degree Sorting
RADAR combines the best of HUBDUP and Degree Sorting by du-
plicating hub vertex data in a degree sorted graph. Duplication
mitigates false sharing and degree sorting keeps the overhead of
duplication low. The key motivation behind RADAR is the observa-
tion that HUBDUP and Degree Sorting are mutually enabling. The



key contribution of RADAR is the tandem implementation of these
techniques, which realizes their mutual benefits.

5 RADAR DESIGN AND IMPLEMENTATION
This section describes the design, implementation, and optimization
of RADAR. We begin by first describing the design of an efficient
HUBDUP baseline implementation, which does not exist in the
literature to the best of our knowledge.

5.1 HUBDUP design decisions
We designed and implemented HUBDUP with the aim of keeping
the space and time overheads of duplication low. To identify hubs
(challenge #1) we collect the in-degrees of all vertices and then
sort the in-degrees to find the threshold degree value for a vertex
to be classified as a hub. We use GCC’s __gnu_parallel::sort
to sort indices by degree efficiently. Note that sorting indices is
much simpler than re-ordering the graph according to the sorted
order of indices (Degree Sorting). We use the hMask bitvector to
dynamically detect hubs (i.e., challenge #2), setting a vertex’s bit
if its degree is above a threshold. hMask has a low memory cost: a
64M-vertex graph requires an 8MB bitvector to track hubs, which
is likely to fit in the Last Level Cache (LLC). We use an array to
implement the mapping from a hub’s vertex ID to its index into
the thread-local copies and another array for the inverse mapping.
HUBDUP populates both arrays in advance.

5.2 Optimizing reduction costs
After each iteration, both HUBDUP (and RADAR) must reduce
updated thread-local hub copies and store each hub’s reduction
result in its entry in the vertex array. Only a subset of hub vertices
may need to be reduced in a given iteration because frontier-based
applications update the neighbors of vertices in the frontier only
(Algorithm 1). An efficient implementation of HUBDUP should
avoid reducing and updating hubs that were not updated during
that iteration. HUBDUP and RADAR explicitly track an iteration’s
updated hub vertices with a visited array that has an entry for
each hub. An update to a hub (by any thread) sets the corresponding
entry in the visited using the Test-and-Test-and-Set operation (if
a hub’s visited bit is set once in an iteration, it is never set again
until the next iteration). After an iteration, HUBDUP reduces the
thread-local, partial updates of each hub that has its visited entry
set and does nothing for other hubs. This visited optimization to
reduction improved RADAR performance by up to 1.25x (geometric
mean speedup of 1.02x).

5.3 Selecting hub vertices for duplication
Due to limited Last Level Cache (LLC) capacity, duplicating all the
hubs 2 in a graph may impose excessive memory overheads. Instead
of duplicating all hubs, HUBDUP and RADAR should duplicate
only a subset of hubs (hub vertices with the highest degrees) such
that the sum of the sizes of all threads’ duplicates is less than
the capacity of the LLC (Last Level Cache). We demonstrate the
importance of duplicating only a subset of hubs by comparing our
LLC-capacity-guided duplication strategy (“CACHE-RADAR”) to a

2 As in prior work [37], we define a hub as a vertex with above-average degree.

variant that duplicated all hubs (“ALL-HUBS-RADAR”). Figure 5
shows their relative performance running all applications on DBP,
the smallest graph in our dataset. The data show that CACHE-
RADAR consistently outperforms ALL-HUBS-RADAR, with better
LLC locality for all threads’ hub duplicates. The performance gap
is likely to grow with graph size, as more hub duplicates compete
for fixed LLC space. Our CACHE-RADAR design most effectively
uses the scarce LLC space to keep only the highest-degree hubs’
duplicates cached.
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Figure 5: Performance of RADARwith different amounts of
duplicated data: The duplication overhead of ALL-HUBS-RADAR
are significant even for the smallest input graph.

numHubs =
S ∗ LLC_Size

(T ∗ elemSz) + δ (1)

This result demonstrates the importance of calibrating HUBDUP
and RADAR to the properties of the machine (LLC size). We use
Equation 1 to calculate the number of hubs to duplicate in HUBDUP
and RADAR. S is a scaling factor (between 0 and 1) that controls
the fraction of LLC to be reserved for storing duplicated data, T
is the number of threads used, and elemSz is the size (in bytes) of
each element in the vtxData array. The δ parameter in the denom-
inator of Equation 1 accounts for memory overheads in HUBDUP
and RADAR. Both RADAR and HUBDUP use a visited boolean
array to optimize reduction (Section 5.2). We set δ = 1, because the
visited array has an entry for each hub. For HUBDUP, maintain-
ing the hMask bitvector and maps to and from a hub’s duplicate’s
location are additional memory costs and we set δ = 3. On vary-
ing the S parameter, we empirically determined that S = 0.9 often
provided the best performance across applications and graphs.

6 EXPERIMENTAL SETUP
We now describe the evaluation methodology used for our quan-
titative studies. We evaluate the performance improvement from
RADAR on a diverse set of applications running on large real-world
input graphs that stress the limits of memory available in our server.

6.1 Evaluation platform and methodology
We performed all of our experiments on a dual-socket server ma-
chine with two Intel Xeon E5-2660v4 processors. Each processor
has 14 cores, with two hardware threads each, amounting to a total
of 56 hardware execution contexts. Each processor has a 35MB Last
Level Cache (LLC) and the server has 64GB of DRAM provided by
eight DIMMs. All experiments were run using 56 threads and we
pinned the software thread to hardware threads to avoid perfor-
mance variations due to OS thread scheduling. To further reduce
sources of performance variation, we also disabled the “turbo boost”
DVFS features and ran all cores at the nominal frequency of 2GHz.



We ran 4 trials for the long-running applications (Pagerank and
Local Triangle Counting) in our evaluation set, and 11 trials for
all the other applications. While computing the mean time, we
exclude the timing for the first trial to allow processor caches to
warm up. For the source-dependent BFS application, we select a
source vertex belonging to the largest connected component in the
graph. We maintain a mapping between vertex IDs before and after
reordering to ensure that source-dependent applications running
on the reordered graphs use the same source as a baseline execution
on the original graph [4].

6.2 Applications
We evaluate the performance of RADAR 3 across five applications
from the Ligra benchmark suite [30] and one application from
the GAP [4] benchmark suite. All the applications were compiled
using g++-6.3 with -O3 optimization level and use OpenMP for
parallelization. We provide a brief description of the execution
characteristics of each application, identifying the vtxData array
and atomic update operation performed on vtxData.
Pagerank (PR): Pagerank is a popular graph benchmark that itera-
tively refines per-vertex ranks (vtxData) until the sum of all ranks
drops below a convergence threshold. The application processes all
the vertices in a graph every iteration and, hence, performs many
random writes to the vtxData array. PR uses atomic instructions to
increment vertex ranks of destination vertices based on properties
of neighboring source vertices.
Pagerank-delta (PR-Delta): Pagerank-delta is a variant of Pager-
ank that does not process all the vertices of a graph each iteration.
Instead, PR-Delta only processes a subset of vertices for which
the rank value changed beyond a δ amount, which improves con-
vergence [19]. Even though PR-Delta does not process all vertices
every iteration, the application processes dense frontiers during the
initial iterations of the computation which generate many random
writes to the vtxData array. PR-Delta uses atomic instructions in a
similar fashion to PR.
BetweennessCentrality (BC):Betweenness-Centrality iteratively
executes a BFS kernel from multiple sources to count the number
of shortest paths passing through each vertex (vtxData). Most iter-
ations of BC process sparse frontiers (i.e. frontier contains a small
fraction of total vertices). BC also performs a transpose operation
(exchanging incoming neighbors with outgoing neighbors and vice
versa) and, hence, is an application that needs to store two CSRs
even in a baseline push-based execution. BC uses atomic instruc-
tions to increment the number of shortest paths passing through
each vertex.
Radii Estimation (Radii): Graph Radii estimation approximates
the diameter of a graph (longest shortest path) by performing si-
multaneous BFS traversals from many randomly-selected sources.
Radii uses a bitvector (vtxData) to store information about BFS tra-
versals from multiple source vertices. Atomic instructions are used
to atomically perform a bitwise-OR on the vtxData array. Unlike
applications discussed so far, subsequent updates to the vtxData
array might produce no change to the vtxData array. Therefore,
Radii uses the Test-and-Test-and-Set (T&T&S) optimization [27] to

3Source code for RADAR (and all the other optimizations) is available at
https://github.com/CMUAbstract/RADAR-Graph

avoid executing atomic instructions for updates that will produce
no change.
Breadth First Search (BFS): BFS is an important graph processing
kernel that is often used as a subroutine in other graph algorithms.
The kernel iteratively visits all the neighbors reachable from a
particular source, identifying a parent for each vertex (vtxData).
Similar to Radii, BFS also uses the T&T&S optimization to atomically
set a parent for each vertex.
Local Triangle Counting (Local-TriCnt): Local Triangle Count-
ing identifies the number of triangles (or cliques of size 3) incident
at each vertex (vtxData) of an undirected graph and is a variant
of the Triangle Counting benchmark that only reports the total
count of triangles. Our Local-TriCnt implementation extends the
optimized Triangle Counting implementation from GAP which
performs Degree Sorting on the input graph to achieve an algo-
rithmic reduction in the number of edges to be processed. Finding
the number of triangles per-vertex allows computing a graph’s
local clustering coefficients which has applications in identifying
tightly-knit communities in social networks [12]. Local-TriCnt uses
atomic instructions to increment the number of triangle discovered
for each vertex.

DBP GPL PLD TWIT MPI KRON WEB SD1
Reference [16] [13] [22] [17] [16] [4] [11] [22]
|V | (in M) 18.27 28.94 42.89 61.58 52.58 67.11 50.64 94.95
|E | (in B) 0.172 0.462 0.623 1.468 1.963 2.103 1.93 1.937
Avg. Degree 9.4 16 14.5 23.8 37.3 31.3 38.1 20.4
% of Hubs 11.75 20.54 14.72 11.30 9.52 8.43 5.56 10.61

Table 2: Statistics for the evaluated input graphs

6.3 Input graphs
To evaluate RADAR’s performance, we use large, real-world, power-
law input graphs that have been commonly used in other academic
research. We also include the kronecker synthetic graph in our
evaluation due to their popularity in the graph500 community [24].
Table 2 lists key statistics for the graphs in our dataset. Unless
noted otherwise, we use the original vertex data ordering of the
input graph as provided by the authors of the graph dataset for our
baseline executions.

7 EVALUATION
RADAR combines the benefits of HUBDUP and Degree Sorting to
improve performance of graph applications. We evaluate the perfor-
mance of RADAR using applications and input graphs described in
Section 6. We also compare RADAR’s performance to the Push-Pull
direction-switching optimization and identify scenarios where each
optimization offers superior performance.

7.1 Performance analysis of RADAR
To illustrate the benefits of combiningHUBDUP andDegree Sorting,
we compare RADAR’s performance with executions that either per-
form HUBDUP or Degree Sorting. Figure 6 shows the performance
of HUBDUP, Degree Sorting, and RADAR relative to a baseline,
push-style execution of graph applications across 8 input graphs.
We report the key findings from the results below:

Finding 1: RADARoutperformsHUBDUPandDegree Sort-
ing. For PR, PR-Delta, Local-TriCnt, and BC, RADAR consistently
provides higher speedups than only performingHUBDUP or Degree
Sorting. The results highlight the synergy between HUBDUP and
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Figure 6: Comparison of RADAR to HUBDUP and Degree Sorting: RADAR combines the benefits of HUBDUP and Degree Sorting,
providing higher speedups than HUBDUP and Degree Sorting applied in isolation.

Degree Sorting which is exploited by RADAR to provide additive
performance gains.

Finding 2: HUBDUP offers speedup in graphs with good
ordering of hubs. For the four applications mentioned above,
HUBDUP only provides speedups on three input graphs - DBP,
MPI, and WEB - often causing a slowdown for the other input graphs.
HUBDUP performs well in the DBP, MPI, and WEB graphs because
most hub vertices are consecutively ordered in these graphs. Due to
the consecutive ordering of hub vertices, accesses to key HUBDUP
data structures – the hMask bitvector and the mapping from hub
vertex ID to locations in thread-local copies – benefit from improved
locality, driving down the costs of an HUBDUP execution.

DBP GPL PLD TWIT MPI KRON WEB SD1
PR Speedup 2.06x 0.85x 0.84x 0.86x 1.49x 0.62x 11.91x 0.90x
Unique words 17.03K 22.39K 64.32K 68.80K 13.03K 71.38K 6.02K 53.56

Table 3: Number of unique words in the hMask bitvector con-
taining hub vertices: HUBDUP offers the highest speedups for
graphs in which hubs map to the fewest number of unique words
in the bitvector.

Table 3 demonstrates the relation between HUBDUP perfor-
mance and the vertex order of the graph by showing speedup from
HUBDUP for PR along with the number of unique words in the
hMask bitvector corresponding to hub vertices. For the same num-
ber of hubs (a machine-specific property as described in Section 5.3),
hubs in the DBP, MPI, and WEB graphs map to fewer words in the
hMask bitvector (an 8B word in the bitvector encodes information
for 64 vertices). Fewer words associated with hub vertices improves
locality of hMask accesses and allows HUBDUP to provide speedups.
The results indicates that HUBDUP is likely to provide speedups for
input graph orderings where hub vertices have nearly consecutive
IDs.

Finding 3: Degree Sorting can lead to performance degra-
dation. Degree Sorting causes slowdowns in PR, PR-Delta, and BC
for certain input graphs. Section 3.3 showed that the performance

degradation is due to increased coherence traffic caused by false
sharing between threads updating hub vertex data. The slowdown
from increased coherence traffic is higher for applications that up-
date more vertices each iteration (PR and PR-Delta) because these
applications have a higher likelihood of simultaneously updating
hub vertices from different threads. RADAR provides speedups
in these applications by duplicating hub vertex data to avoid an
increase in coherence traffic.

Finding 4: Degree Sorting provides significant speedups
for Local-TriCnt. The results for the PLD, TWIT, andWEB graphs
on Local-TriCnt show high speedups from Degree Sorting. The high
speedups are due to an algorithmic reduction in the number of edges
that need to be processed to identify all the triangles in the graph.
The GAP implementation of Triangle Counting already uses Degree
Sorting. We normalize data to a baseline without Degree Sorting
to show the algorithmic improvement from reordering. RADAR
provides additional speedups over the algorithmic improvements
from Degree Sorting by eliminating atomic instructions, improving
performance by 4.7x on average over Degree Sorting.

Finding 5: Degree Sorting performs best for BFS andRadii.
In contrast to Finding 1, the results for BFS and Radii show that
Degree Sorting consistently outperforms RADAR and HUBDUP.
BFS and Radii use the Test-and-Test-and-Set (T&T&S) optimization,
which reduces the cost of atomic updates for these applications
(Figure 2). The T&T&S optimization also helps avoid an increase
in coherence traffic from Degree Sorting, thereby improving local-
ity. For BFS and Radii, the small improvements from eliminating
atomic updates do not justify the cost of duplicating hub vertex
data causing RADAR to provide lower performance that Degree
Sorting.

To demonstrate the relation between reduced speedup from
RADAR and the T&T&S optimization, we studied a BFS implemen-
tation that does not use T&T&S. Figure 8 shows the performance
of Degree Sorting and RADAR for such a BFS implementation. In
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Figure 7: Speedups from Push-Pull and RADAR: The total bar height represents speedup without accounting for the preprocessing costs of
Push-Pull and RADAR. The filled, lower bar segment shows the net speedup after accounting for the preprocessing overhead of each optimization.
The upper, hashed part of the bar represents the speedup loss as a result of accounting the preprocessing overhead of each optimization.
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Figure 8: Performance improvements for BFS without the
T&T&S optimization: In the absence of the T&T&S optimization,
RADAR outperforms Degree Sorting.

the absence of T&T&S, the performance results for BFS mirror the
results for PR and PR-Delta applications, showing slowdowns with
Degree Sorting and speedups with RADAR. While BFS and Radii
would never be implemented without the T&T&S optimization, this
experiment was useful for showing that RADAR is most effective
for applications that cannot use T&T&S.

7.2 Comparison to Push-Pull
We compare RADAR’s performance against Push-Pull direction
switching which is the state-of-the-art in eliminating atomic up-
dates in graph applications. Figure 7 shows the speedups from
RADAR and Push-Pull relative to a baseline, push-based execution.
The results show speedups both including the preprocessing over-
heads (solid bars) and without including the cost of preprocessing
(total bar height). In this section, we explain the performance of
Push-Pull and RADAR without considering preprocessing over-
heads (i.e., here we focus on the total bar height) and defer the dis-
cussion on performance with preprocessing costs to Section 7.4. The
relative benefit of RADAR over Push-Pull is application-dependent
and we report our findings for each application below.

Pagerank: Pagerank updates every vertex each iteration (i.e.
frontier includes all the vertices). Therefore, every iteration uses

the pull phase (Algorithm 2) to eliminate atomic updates. The results
show that executing PR using the pull phase improves performance
by eliminating atomic updates. However, RADAR outperforms the
pull-phase execution because RADAR couples eliminating atomic
updates for hub vertices with improved locality. The only exception
is the WEB graph which receives significantly higher speedup from
Push-Pull because the creators of the graph use a sophisticated
algorithm [8], that optimizes pull phase execution, to pre-order the
graph at great computational cost [2].

Pagerank-delta: Pagerank-delta uses the Push-Pull optimiza-
tion to process the graph in the pull phase during dense frontiers
(i.e. frontier contains most of the vertices in the graph) and in the
push phase otherwise. A pull phase execution eliminates all atomic
updates at the expense of reducing work-efficiency. Additionally,
a pull phase execution also converts the regular accesses to the
Frontier in the push phase (line 1 in Algorithm 1) into irregular
accesses (line 3 in Algorithm 2). For many graphs, the performance
loss from irregular Frontier accesses offsets the benefits from elimi-
nating atomic updates and a Push-Pull execution causes slowdowns.
In contrast, RADAR provides better performance by eliminating
a large fraction of atomic updates while maintaining regular ac-
cesses to the Frontier . As before, the WEB graph is an exception,
where the pull-optimized layout of the graph ensures good locality
for Frontier accesses. Consequently, Push-Pull eliminates atomic
updates without incurring a penalty for Frontier accesses, leading
to significant performance improvement for the WEB graph.

We explored the trade-off of a pull phase execution, which is
to eliminate atomic updates at the expense of making Frontier
accesses irregular, by running PR-Delta on the same graphs but
with two different vertex orders – random ordering and a pull phase
optimized ordering called frequency based clustering [37]. Figure 9
shows the speedups from Push-Pull and RADAR on graphs with the
two different orderings. Results for the randomly-ordered graphs
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Figure 9: Speedups for PR-Delta fromPush-Pull andRADAR
on graphs with different orderings: Push-Pull causes consistent
slowdowns when running on randomly ordered graphs.

show that Push-Pull consistently causes slowdowns because the
random ordering makes Frontier accesses highly irregular, thereby
offsetting any performance benefits from eliminating atomics. Note
that Push-Pull causes slowdown even in the WEB graph when
it is randomly ordered. Push-pull performs better for the graphs
ordered with the pull-phase optimized frequency based clustering
algorithm. In contrast to Push-Pull, RADAR improves performance
regardless of the original vertex order of the graph and, hence, is
more generally applicable.

Local TriangleCounting: Local Triangle Counting operates on
undirected ("symmetrized") versions of input graphs and performs
the same accesses in both push and pull phases. For applications like
Local Triangle Counting that operate on undirected graphs, RADAR
is the only option for improving performance by eliminating atomic
instructions.

Algorithm 3 Pseudocode for push-phase of BC

1: par_for src in Frontier do
2: for dst in out_neiдh(src) do
3: if Visited[dst] is True then
4: AtomicUpd (vtxData[dst]), auxData[src])

Betweenness-Centrality: Just like Pagerank-delta, BC uses the
Push-Pull optimization by processing dense frontiers using the pull
phase and otherwise using the push phase. However, the per-edge
computation performed in BC (shown in Algorithm 3) is different
from PR-Delta. BC performs an additional check on a Visited data
structure (line 3) before performing its per-edge computation. For
each edge, BC accesses two data structures, each indexed by the
source and destination IDs of the edge. Regardless of whether an
iteration is processed using the push phase or the pull phase, BC
performs irregular accesses to one of the data structures (Visited
during the push phase and Frontier during the pull phase). There-
fore, unlike PR-Delta, a pull-phase iteration in BC eliminates atomic
updates without introducing irregular accesses. As a result, Push-
Pull often outperforms RADAR for BC.

BFS: The Push-Pull direction-switching optimization was origi-
nally designed for BFS [4, 30]. In BFS, processing a dense frontier
in the pull-phase allows breaking out of the iteration sooner than a
push-phase execution. Therefore, Push-Pull significantly outper-
forms RADAR by achieving an algorithmic reduction in the total
number of edges required to be processed.

Radii: Radii has an access pattern similar to Pagerank-delta.
However, unlike Pagerank-delta, Radii is not bottlenecked by atomic

updates thanks to T&T&S. With little potential for performance
improvement from eliminating atomic updates (Figure 2), Push-Pull
provides low speedup for Radii.

7.3 RADAR avoids high memory overhead
The Push-Pull optimization doubles an application’s memory foot-
print. Push-Pull implementations switch between executing a graph
using push and pull phases based on frontier density and, hence, re-
quire two CSRs - one for outgoing neighbors (used during the push
phase) and another for incoming neighbors (used during the pull
phase). The higher memory footprint of Push-Pull cuts in half the
maximum graph size that can be processed using a single machine.

PR PR-Delta BFS Radii Local-TriCnt
Input Graphs

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

S
p

ee
du

p

O
O

M
O

O
M

O
O

M
O

O
M

O
O

M
O

O
M

O
O

M
O

O
M

9.6x

SDH Graph (102M vertices, 2B edges)

PUSH PUSH-PULL +RADAR

Figure 10: Speedups fromRADAR for the SDHgraph: RADAR
provides speedups while the size of SDH graph precludes applying the
Push-Pull optimization.

To illustrate the limitations imposed by the higher memory foot-
print of Push-Pull, we ran experiments on the subdomain host [22]
(SDH) graph which is even larger than the SD1 graph. The size
of the SDH graph causes an Out of Memory (OOM) error in our
64GB server when storing both the in- and out- CSRs of the graph,
making it impossible to apply the Push-Pull optimization for the
graph. In contrast, our server fits just the out-CSR of the graph,
accommodating the baseline and RADAR versions of applications.
Figure 10 shows the performance of RADAR on the SDH graph
across different applications. We were unable to run any config-
uration for BC since even the baseline execution of BC requires
both the in- and out-CSRs. The result shows that RADAR provides
significant performance improvements for the SDH graph, while
Push-Pull runs out of memory. By maintaining the same memory
footprint as the baseline, RADAR provides performance improve-
ments for larger graphs than Push-Pull, making RADAR a more
effective optimization for graph processing in a single, memory-
limited machine.

7.4 Preprocessing overheads
All the optimizations covered in the paper – HUBDUP, Degree Sort-
ing, RADAR, and Push-Pull– require some form of preprocessing
on the input graph. The input graph used in Ligra is an adjacency
file that stores outgoing edges of the graph in the CSR format.
The preprocessing step for Push-Pull builds an in-CSR (CSR for
incoming edges) by traversing the input graph to first collect all
the incoming edges of the graph and then sorting all the incoming
edges by destination IDs4. For HUBDUP, the preprocessing step
involves populating the hMask bitvector for identifying hubs and
creating maps between hub vertex IDs and unique locations in
thread-local copies of hub data. For RADAR and Degree Sorting,
the input graph needs to reordered in decreasing order of degrees.
4Ligra uses radix sort to construct the in-CSR.



Reordering the graph requires sorting the in-degrees of vertices
to create a mapping from original vertex IDs to new IDs (ordered
by decreasing in-degrees) followed by populating a new out-CSR
with vertices in the new order. Table 4 lists the preprocessing algo-
rithm complexity and runtime for the different optimizations on
all input graphs. HUBDUP has the lowest complexity because it
only scans the degrees of all vertices. Push-Pull incurs the maxi-
mum complexity because it sorts all the edges to build an in-CSR.
Push-Pull, however, incurs zero preprocessing cost for undirected
graphs because these graphs have the same incoming and outgoing
edges. Finally, RADAR imposes lower preprocessing overhead than
Push-Pull for directed graphs.

Complexity DBP GPL PLD TWIT MPI KRON WEB SD1
HUBDUP O (V ) 0.06s 0.11s 0.14s 0.24s 0.22s 0.23s 0.19s 0.37s
DegSort/RADAR O (V loдV + E) 0.88s 2.37s 2.29s 8.26s 19.06s 2.94s 3.49s 7.42s
Push-Pull O (EloдE) 2.96s 7.03s 3.91s 9.68s 47.71s 0s 10.86s 12.51s

Table 4: Preprocessing costs for HUBDUP, RADAR, and
Push-Pull: Degree Sorting and RADAR have a smaller preprocessing
cost compared to Push-Pull. (V - #vertices and E - #edges)

Figure 7 shows the speedups from Push-Pull and RADAR af-
ter accounting for the above preprocessing costs (filled, lower bar
segments). Preprocessing overheads are easily justified for long-
running applications such as Pagerank and Local Triangle Counting
where RADAR provides a net speedup even after including the pre-
processing costs. Preprocessing imposes significant overheads for
PR-Delta and Radii. However, these applications are refinement-
based algorithms where preprocessing can be justified when more
refined results are desired (for example, lower convergence thresh-
old in PR-Delta, traversals from more sources in Radii and BC).
Finally, preprocessing overheads can be justified for BFS in scenar-
ios where multiple traversals on the same graph are performed.

8 RELATEDWORK
We divide the prior work in graph processing related to RADAR
into three categories – data duplication, reducing cost of atomic
updates, and locality optimizations.
Data duplication in graph applications: Priorwork in distributed
graph processing has proposed data duplication for hub vertices
in power-law graphs [14, 26]. Vertex delegates [26] replicates hub
vertex data across all nodes in a cluster and uses asynchronous
broadcasts and reductions to reduce total communication for up-
dating hub data. Powergraph [14] creates replicas of hub vertices to
create balanced vertex cuts (assigning equivalent number of edges
to each node). As discussed in Section 3.2, the duplication strategies
used in the above systems are not directly applicable in the shared
memory setting due to differences in the primary bottlenecks of the
two scenarios. Data duplication has also been used for reducing the
cost of atomic updates in GPU-based graph processing [20]. Similar
to RADAR, Garaph highlights the importance of restricting dupli-
cation overheads to avoid an increase in DRAM accesses. However,
RADAR and Garaph use different techniques to reduce duplication
overhead. RADAR creates a per-thread copy only for hub vertices
whereas Garaph duplicates all vertices but creates fewer copies
than number of threads. The duplication strategy of Garaph is tied
to the out-of-core [18] execution model that targets graphs that
cannot fit in memory and, hence, is orthogonal to RADAR (which
targets in-memory graph processing).

Reducing cost of atomic updates: Prior work has proposed tech-
niques to reduce the cost of atomic updates in graph processing.
AAM [6] is a system that uses Hardware Transactional Memory
(HTM) to reduce the cost of atomic updates. AAM amortizes the
cost of providing atomicity by applying updates for multiple ver-
tices within a single transaction instead of atomically updating each
vertex. However, the authors report that AAM is only effective for
applications that employ the T&T&S optimization (particularly BFS)
and leads to many transaction aborts for applications that cannot
employ T&T&S. Therefore, AAM and RADAR are complimentary
optimizations because RADAR provides the best performance for
applications that cannot employ T&T&S. Galois [25] uses specula-
tive parallelism to avoid fine grained synchronization and improve
locality in irregular applications. RADAR also aims to avoid fine
grain synchronization and improve locality, but uses data dupli-
cation to achieve the goal. Finally, Besta et. al. [7] proposed the
"Partition Awareness (PA)" optimization for reducing atomic up-
dates in push-based graph applications. The PA optimization creates
two CSRs – one identifying neighbors local to a core and another
identifying neighbors belonging to remote cores – allowing threads
to update local neighbors without atomic instructions. However,
PA requires static partitioning of vertices to thread and precludes
dynamic load balancing (which is critical for power-law graphs).
Locality optimizations for graphprocessing: Extensive research
in graph reordering has produced reordering techniques with vary-
ing levels of sophistication to improve graph locality [2, 8, 15, 34, 37].
While RADAR could potentially be applied with different reorder-
ing techniques, efficient duplication of hub vertices requires that
the reordering mechanism produce a graph where the hub vertices
are assigned consecutive IDs (Section 4.1). We chose Degree Sort-
ing in our study because of its low overhead and the advantage of
assigning hub vertices consecutive IDs at the start of the vertex
array. Studying combinations of RADAR with different reorder-
ing techniques is an interesting line of research and we leave this
exploration for future work.

Vertex scheduling is an alternative to graph reordering that
improves locality by changing the order of processing vertices.
Prior work [21, 37] has shown that traversing the edges of a graph
along a Hilbert curve can improve locality of graph applications.
However, these techniques complicate parallelization [5, 37]. Vertex
scheduling only targets an improvement in locality and, unlike
graph reordering, does not help in improving the efficiency of data
duplication for power-law graphs.

Cache blocking is another technique used to improve locality
of graph applications. Zhang et. al. [37] proposed CSR segmenting
– a technique to improve temporal locality of vtxData accesses
by breaking the original graph into subgraphs that fit within the
Last Level Cache. Variations of cache blocking [5, 9] partition up-
dates to vtxData instead of partitioning the graph. RADAR differs
from these prior works in that RADAR targets not just locality
improvement but also a reduction in atomic updates.

Graph partitioning techniques, traditionally used for reducing
communication in distributed graph processing, have recently been
applied to improve locality of in-memory graph processing frame-
works [31, 32, 36]. Sun et. al. [31] proposed a partitioning approach
where all the incoming edges of a vertex are placed in the same
partition to improve temporal locality of memory accesses. The



authors propose modifications to the graph data structure and com-
putation to handle a large number of partitions and demonstrate
significant locality improvements along with eliminating atomic up-
dates. RADAR aims to achieve the same goals as this prior work, but
without requiring changes to the graph data structure, increasing
the memory footprint, or reducing work-efficiency.

9 CONCLUSIONS
We propose RADAR, an optimization that improves the perfor-
mance of graph applications by reducing atomic updates and im-
proving cache locality. RADAR combines the mutually-beneficial
optimizations of HUBDUP and Degree Sorting, offering better per-
formance than HUBDUP and Degree Sorting applied in isolation.
Finally, RADAR is an alternative technique to the push-pull op-
timization used for eliminating atomic updates in graph applica-
tions. We show that by avoiding a reduction in work-efficiency and
maintaining a low memory footprint, RADAR is a more generally
applicable optimization for single-node graph processing.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their valuable feedback.
We thank Matei Ripeanu for shepherding our paper. This work is
funded in part by National Science Foundation Award XPS-1629196.

REFERENCES
[1] [n. d.]. Graph-powered Machine Learning at Google. https://ai.googleblog.com/

2016/10/graph-powered-machine-learning-at-google.html. Accessed: 2019-01-
23.

[2] Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka, and Sotetsu
Iwamura. 2016. Rabbit order: Just-in-time parallel reordering for fast graph
analysis. In Parallel and Distributed Processing Symposium, 2016 IEEE International.
IEEE, 22–31.

[3] V. Balaji and B. Lucia. 2018. When is Graph Reordering an Optimization? Study-
ing the Effect of Lightweight Graph Reordering Across Applications and Input
Graphs. In 2018 IEEE International Symposium on Workload Characterization
(IISWC). 203–214. https://doi.org/10.1109/IISWC.2018.8573478

[4] Scott Beamer, Krste Asanovic, and David Patterson. 2015. Locality exists in graph
processing: Workload characterization on an ivy bridge server. In Workload
Characterization (IISWC), 2015 IEEE International Symposium on. IEEE, 56–65.

[5] Scott Beamer, Krste Asanović, and David Patterson. 2017. Reducing pagerank
communication via propagation blocking. In Parallel and Distributed Processing
Symposium (IPDPS), 2017 IEEE International. IEEE, 820–831.

[6] Maciej Besta and Torsten Hoefler. 2015. Accelerating irregular computations with
hardware transactional memory and active messages. In Proceedings of the 24th
International Symposium on High-Performance Parallel and Distributed Computing.
ACM, 161–172.

[7] Maciej Besta, Michał Podstawski, Linus Groner, Edgar Solomonik, and Torsten
Hoefler. 2017. To Push or To Pull: On Reducing Communication and Synchro-
nization in Graph Computations. In 26th International Symposium on High-
Performance Parallel and Distributed Computing (HPDCâĂŹ17).

[8] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered
label propagation: A multiresolution coordinate-free ordering for compressing
social networks. In Proceedings of the 20th international conference on World wide
web. ACM, 587–596.

[9] Daniele Buono, Fabrizio Petrini, Fabio Checconi, Xing Liu, Xinyu Que, Chris
Long, and Tai-Ching Tuan. 2016. Optimizing sparse matrix-vector multiplication
for large-scale data analytics. In Proceedings of the 2016 International Conference
on Supercomputing. ACM, 37.

[10] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. Powerlyra: Differen-
tiated graph computation and partitioning on skewed graphs. In Proceedings of
the Tenth European Conference on Computer Systems. ACM, 1.

[11] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011), 1.

[12] David Easley and Jon Kleinberg. 2010. Networks, crowds, and markets: Reasoning
about a highly connected world. Cambridge University Press.

[13] Neil Zhenqiang Gong and Wenchang Xu. 2014. Reciprocal versus parasocial
relationships in online social networks. Social Network Analysis and Mining 4, 1
(2014), 184.

[14] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs..
In OSDI, Vol. 12. 2.

[15] Konstantinos I Karantasis, Andrew Lenharth, Donald Nguyen, María J Garzarán,
and Keshav Pingali. 2014. Parallelization of reordering algorithms for bandwidth
and wavefront reduction. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE Press, 921–932.

[16] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In Proceedings of
the 22nd International Conference on World Wide Web. ACM, 1343–1350.

[17] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media?. In WWW ’10: Proceedings of the 19th
international conference on World wide web. ACM, New York, NY, USA, 591–600.
https://doi.org/10.1145/1772690.1772751

[18] Aapo Kyrola, Guy E Blelloch, Carlos Guestrin, et al. 2012. GraphChi: Large-Scale
Graph Computation on Just a PC.. In OSDI, Vol. 12. 31–46.

[19] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,
and Joseph M Hellerstein. 2012. Distributed GraphLab: a framework for machine
learning and data mining in the cloud. Proceedings of the VLDB Endowment 5, 8
(2012), 716–727.

[20] Lingxiao Ma, Zhi Yang, Han Chen, Jilong Xue, and Yafei Dai. 2017. Garaph:
Efficient gpu-accelerated graph processing on a single machine with balanced
replication. In 2017 {USENIX} Annual Technical Conference ({USENIX}{ATC}
17). 195–207.

[21] Frank McSherry, Michael Isard, and Derek Gordon Murray. 2015. Scalability! But
at what COST?. In HotOS.

[22] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. 2014.
Graph structure in the web—revisited: a trick of the heavy tail. In Proceedings of
the 23rd international conference on World Wide Web. ACM, 427–432.

[23] Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma, and
Daniel Sanchez. 2018. Exploiting Locality in Graph Analytics through Hardware-
Accelerated Traversal Scheduling. In Proceedings of the 51st annual IEEE/ACM
international symposium on Microarchitecture (MICRO-51).

[24] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang. 2010.
Introducing the graph 500. Cray Users Group (CUG) (2010).

[25] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight
infrastructure for graph analytics. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. ACM, 456–471.

[26] Roger Pearce, Maya Gokhale, and Nancy M Amato. 2014. Faster parallel traversal
of scale free graphs at extreme scale with vertex delegates. In High Performance
Computing, Networking, Storage and Analysis, SC14: International Conference for.
IEEE, 549–559.

[27] Larry Rudolph and Zary Segall. 1984. Dynamic Decentralized Cache Schemes
for Mimd Parallel Processors. SIGARCH Comput. Archit. News 12, 3 (Jan. 1984),
340–347. https://doi.org/10.1145/773453.808203

[28] Nadathur Satish, Narayanan Sundaram, Md Mostofa Ali Patwary, Jiwon Seo,
Jongsoo Park, M Amber Hassaan, Shubho Sengupta, Zhaoming Yin, and Pradeep
Dubey. 2014. Navigating the maze of graph analytics frameworks using massive
graph datasets. In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data. ACM, 979–990.

[29] Mahadev Satyanarayanan. 2017. The emergence of edge computing. Computer
50, 1 (2017), 30–39.

[30] Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph processing
framework for shared memory. In ACM Sigplan Notices, Vol. 48. ACM, 135–146.

[31] Jiawen Sun, Hans Vandierendonck, and Dimitrios S Nikolopoulos. 2017. Acceler-
ating Graph Analytics by Utilising the Memory Locality of Graph Partitioning. In
Parallel Processing (ICPP), 2017 46th International Conference on. IEEE, 181–190.

[32] Jiawen Sun, Hans Vandierendonck, and Dimitrios S Nikolopoulos. 2017. Graph-
Grind: addressing load imbalance of graph partitioning. In Proceedings of the
International Conference on Supercomputing. ACM, 16.

[33] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Subramanya R
Dulloor, Michael J Anderson, Satya Gautam Vadlamudi, Dipankar Das, and
Pradeep Dubey. 2015. Graphmat: High performance graph analytics made pro-
ductive. Proceedings of the VLDB Endowment 8, 11 (2015), 1214–1225.

[34] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. 2016. Speedup graph pro-
cessing by graph ordering. In Proceedings of the 2016 International Conference on
Management of Data. ACM, 1813–1828.

[35] Dan Zhang, Xiaoyu Ma, Michael Thomson, and Derek Chiou. 2018. Minnow:
Lightweight Offload Engines for Worklist Management and Worklist-Directed
Prefetching. In Proceedings of the Twenty-Third International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. ACM,
593–607.

[36] Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-aware Graph-
structured Analytics. SIGPLAN Not. 50, 8 (Jan. 2015), 183–193. https://doi.
org/10.1145/2858788.2688507

[37] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and M. Zaharia. 2017. Making
caches work for graph analytics. In 2017 IEEE International Conference on Big
Data (Big Data). 293–302. https://doi.org/10.1109/BigData.2017.8257937

https://ai.googleblog.com/2016/10/graph-powered-machine-learning-at-google.html
https://ai.googleblog.com/2016/10/graph-powered-machine-learning-at-google.html
https://doi.org/10.1109/IISWC.2018.8573478
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1145/773453.808203
https://doi.org/10.1145/2858788.2688507
https://doi.org/10.1145/2858788.2688507
https://doi.org/10.1109/BigData.2017.8257937

	Abstract
	1 Introduction
	2 Background: Graph Processing
	3 The Case for RADAR
	3.1 Atomics impose significant overheads
	3.2 Data duplication for power-law graphs
	3.3 Graph reordering for locality
	3.4 Benefits of combining duplication and reordering

	4 RADAR: Combining Duplication and Reordering
	4.1 Sources of inefficiency in HUBDUP
	4.2 Degree Sorting improves HUBDUP
	4.3 HUBDUP improves Degree Sorting
	4.4 RADAR = HUBDUP + Degree Sorting

	5 RADAR Design and Implementation
	5.1 HUBDUP design decisions
	5.2 Optimizing reduction costs
	5.3 Selecting hub vertices for duplication

	6 Experimental Setup
	6.1 Evaluation platform and methodology
	6.2 Applications
	6.3 Input graphs

	7 Evaluation
	7.1 Performance analysis of RADAR
	7.2 Comparison to Push-Pull
	7.3 RADAR avoids high memory overhead
	7.4 Preprocessing overheads

	8 Related Work
	9 Conclusions
	References

