
Playing Cupid: The IDE as a Matchmaker for Plug-Ins

Todd W. Schiller and Brandon Lucia

Department of Computer Science
University of Washington

Seattle, Washington
{tws,blucia0a}@cs.washington.edu

Abstract—We describe a composable, data-driven, plug-in
ecosystem for IDEs. Inspired by Unix’s and Windows Power-
Shell’s pipeline communication models, each plug-in declares
data-driven capabilities. Developers can then seamlessly mix,
match, and combine plug-in capabilities to produce new insight,
without modifying the plug-ins.

We formalize the architecture using the polymorphic lambda
calculus, with special types for source and source locations;
the type system prevents nonsensical plug-in combinations,
and helps to inform the design of new tools and plug-ins.
To illustrate the power of the formalism, we describe several
synergies between existing plug-ins (and tools) made possible
by the ecosystem.

I. INTRODUCTION

IDEs and plug-ins that provide apt information and
action suggestions greatly boost developer productivity.
For example, consider a developer who has two plug-
ins installed: RefactorSuggest, a plug-in that suggests
and performs refactorings, and PerformancePredict,
a plug-in that estimates the performance of the pro-
gram. Being performance-conscious, the developer can run
PerformancePredict after performing a refactoring
with RefactorSuggest to ensure the modification hasn’t
significantly degraded performance — the developer is man-
ually filtering refactoring suggestions. In a perfect world,
the filtering would be performed automatically; refactorings
which harmed performance would not be suggested so
that the developer would have the benefits of refactoring
suggestions without having to worry about performance.

But, the developer isn’t just concerned with her local
copy, she also cares about the performance of the program
that is created when she merges her local changes with
the repository using the plug-in VersionControl. So,
she must invoke PerformancePredict on the merged
copy before committing. At commit time, however, it may
be onerous to rollback the refactoring that degraded perfor-
mance; the developer should have known about the perfor-
mance degradation at the time of the refactoring. In a perfect
world, the refactorings that would harm performance when
merged might not even be suggested.

Modern IDEs like Eclipse can handle both fil-
tering scenarios. In the first case, the author of

RefactoringSuggest can declare an extension point,
and the author of PerformancePredict can then mod-
ify their plug-in to contribute to the extension point.
Adding VersionControl is also possible: the author of
PerformancePredict could define an extension point
for plug-ins that modify source code, and the author of
VersionControl could then modify their plug-in to con-
tribute to the extension point. In practice, this is neither real-
istic nor desirable. The author of PerformancePredict
cannot be expected to define such an extension point which
is not related to the functionality of the plug-in. Addi-
tionally, the author of VersionControl should not be
expected to choose to contribute specifically to the plug-
in PerformancePredict, lest they be expected to con-
tribute to any and every Eclipse plug-in.

This is discouraging given the natural fit between the
capabilities of the plug-ins: RefactorSuggest suggests
changes to the program source, VersionControl pro-
duces changes to the program source by performing a merge,
and PerformancePredict analyzes source code.

In this paper we present a plug-in model for IDEs that
captures this opportunity for communication between plug-
ins, even those plug-ins that are independently developed.
Based on this model, the end-user can define filters, and
create pipelines of analyses to produce novel insight.

A model of IDEs: IDEs are predominately modal, pro-
viding modes for development, testing, debugging, and syn-
chronization. Within these modes, analyses are performed
which can be displayed to the user in views, or used to
determine which actions are available to the user. A plug-
in provides some additional set of modes, analyses, views,
and actions to the IDE platform, or other plug-ins, by
contributing to explicit extension points.

Table I shows a subset of the modes, analyses, views,
and actions provided by Eclipse, and some plug-ins. As our
opening example suggests, new insight can be gained when
views, analyses, and (possibly) actions are mixed between
modes. However, remarkably little work has been done in
this space, especially within the IDE.

IDEs as matchmakers: We describe a composable plug-
in ecosystem in which the IDE plays matchmaker for data-
driven plug-in capabilities. Each plug-in publishes its capa-



Eclipse Features
Mode Analyses View Actions

Development Compilation, Code Clone Detection §III-D Compilation Errors, JavaDoc, Class Outline, TODOs, QuickFix, Refactor,
Unit Test Results §III-C, Merge Conflicts §III-A, Format
Code Clones §III-D

Debugging Evaluate Expression Watch, Stack Trace, Set / Remove Breakpoint
Test Coverage §III-E, Code Churn §III-E Step / Pause / Continue

Testing Run Tests, Code Coverage Unit Test Results, Code Coverage Run Test(s)
Synchronization Conflicts, Diff Synchronize View, Diff, Log Commit, Revert, Update

Verification (1)
Extended Static Checking Contract Warnings, Contract Suggestions Check
Daikon Contract Inference §III-B2
Dynamic Contract Violations §III-B1

Table I
A SUBSET OF THE MODES, ANALYSES, VIEWS, AND ACTIONS PROVIDED BY ECLIPSE, AND SOME PLUG-INS. ENTRIES IN ITALICS ARE POSSIBILITIES

THAT COULD BE REALIZED USING THE DESCRIBED PLUG-IN ECOSYSTEM. EACH OF THESE IS DESCRIBED IN SECTION III.

bilities to a “bulletin board” in the IDE, allowing other plug-
ins to use the capability. End-users can then seamlessly mix,
match, and combine capabilities to produce new insights,
without modifying the plug-ins.

Our model is inspired by Unix’s data pipeline and Win-
dows PowerShell’s object pipeline. These systems are made
up of small, single-purpose, programs that communicate via
text and objects, respectively. This paper makes three main
contributions:

1) A formulation of plug-in capabilities in the polymor-
phic lambda calculus (2) that describes how plug-ins
can communicate; the formalism has the added benefit
of suggesting new analyses that can be invented by
combining existing capabilities.

2) Filters, which allow the end-user to filter out extraneous
analysis or undesirable action suggestions (e.g., bad
Quick Fix (3) suggestions).

3) Pipelines, which allow the end-user to combine data-
driven plug-in capabilities to produce novel insight.

To explore potential interactions between plug-ins, we
describe novel analyses and views that the end-user could
create using our system. Many of these are created by
allowing users to view the results of an analysis outside
of that analysis’s “natural” mode, e.g., showing code churn
when debugging.

In Section II we formalize the proposed plug-in ecosystem
by introducing the types, filters, and pipes. In Section III, we
describe example synergies between existing plug-ins (and
tools) that can be captured using the model. In Section IV,
we discuss the limitations of the model and extensions to the
model to address those limitations. In Section V we describe
related work in pipeline programming and mash-ups. We
conclude in Section VI.

II. PLUG-IN ECOSYSTEM

In this section, we describe the design space for the
data-driven IDE plug-in ecosystem. When the IDE loads,
each plug-in publishes the type of capabilities it provides
to the IDE’s bulletin board (IDE components also publish
capabilities, as if they were plug-ins). Similarly, when the

user creates a filter or capability pipeline, a description of
its type is published to the bulletin board.

A. Basic Types

To ensure that the data being communicated between
plug-ins is sensible, we formalize plug-in capabilities using
types in a typed lambda calculus extended with pairs, type
lists, and type sets:
t ::= bool | number | string |

source | location |
t -> t | (t, t) | {t*} | [t*]

Here source is the type for the whole source of a project. For
a Java project, this includes source files, build configuration
files, etc. The location type refers to a location in the source.
Given these types, a plug-in can publish two basic interfaces:

• Program Transformation: source → source
• Program Analysis: source → τ

, where τ is any of the aforementioned types. Two useful
type aliases are:

• action ≡ source → source
• label ≡ (location, τ), a source annotation

These aliases allow the results of common analyses to be
described naturally and succinctly:

• Program trace: [label∗], where each label annotates a
single instruction

• Test suite results: {label∗}, where each label is a test
and its outcome

• Call graph: {(location, location)∗}, a set of call graph
edges

• Action Suggestion: (source, action)
Consider the example from the introduction, with plug-
ins RefactorSuggest, PerformancePredict, and
VersionControl. The plug-ins would publish the fol-
lowing capabilities:

Published Capabilities (from Example)
RefactorSuggest source →

{(source, action)∗}
PerformancePredict source → number

VersionControl (Merge) action



In words, RefactorSuggest is a program analysis that
produces action suggestions, PerformancePredict is a
program analysis that produces a single number (a score),
and VersionControl is a source transformation (action).
In Sections II-C and II-D, we introduce a few pieces of
additional machinery to combine the plug-in capabilities in
order to hide refactoring suggestions that would harm the
performance of the program when merged.

B. Parametric Types and Bounded Polymorphism

To further prevent nonsensical plug-in matching, addi-
tional types can be introduced for source and source lo-
cations:

source ::= text | java | bytecode |
trace

location ::= text | method | test

To aide exposition, we’ll write the source and location types
as if they parametrized the source and location types:

• source<L>, where L is the language of the source
code

• location<T>, where T is the type of location
We’ll use the same notation for labels:

• label<T,A>, where T is the location type and A is
the type of annotation

With such types, a Java compiler can be viewed as offering
both a checking and compilation capability:

Java Compiler Capabilities
Check source<java> → {label<text, string>∗}
Compile source<java> → source<bytecode>

Bounded polymorphism à la System F<: (2) can be used
to further clarify the type of a capability. For example,
the VersionControl capability has the type:∀L <:
text. (source<L> → source<L>) since it can merge any
type of textual data. Here, <: is the subtyping operator.

General-use plug-ins are those that accept more gen-
eral types; if plug-in-specific types are used, other plug-
in authors would have to co-develop against the plug-in to
produce the requisite types, and the system would devolve
into an extension-point based system.

C. Pipelines

The dataflow connection between two capabilities is a
pipe. A pipeline is a combination of multiple capabili-
ties using pipes. Pipes and pipelines have types, which
is determined by combining the types of the capabilities.
Note that one plug-in may expose multiple capabilities and
appear multiple times in the same pipeline. In our example,
VersionControl has the type

∀L<: text. (source<L> → source<L>)

, and PerformancePredict has the type

source<Java> source<Java> → 
source<Java>

source<Java> → 
number

Merge Changes Predict Performance

number

Predict Performance of Merged Program

Version Control Performance Predict
Performance
ScoreProgram

Merge and Predict Pipeline

source<Java> → number

Figure 1. A pipeline that assesses the performance of a program after it
is merged with the version checked into version control.

source<java> → number

From VersionControl’s published capability, it is
known that given a java source, it will produce java
source. Since PerformancePredict consumes java
source, we know the capabilities can be combined with a
pipe. The resulting pipeline, shown in Figure 1, has the type
source<java> → number.

We propose to allow the end-user to design pipelines. We
envision a graphical user interface à la LabVIEW (4) for
creating a pipeline of capabilities. Given such an interface,
the developer in our example could easily create the pipeline
that provides post-merge performance analysis.

D. Filters

In our running example, our developer also wants to
filter the refactoring suggestions from RefactorSuggest
based on their performance. In general, a programmer may
want to filter a collection of any type, such as action
suggestions or program traces.

A filter removes elements from a set or list with element
type τ using an inclusion predicate τ → bool. For each
element in a collection (set or list), the element is included
in the filtered collection if, and only if, the predicate is true
for the element. Filters for sets have the type (τ → bool) →
({τ∗} → {τ∗}); filters for lists have the type (τ → bool) →
([τ∗] → [τ∗]). That is, they take an inclusion predicate,
and produce a capability that filters collections using that
predicate.

The key to defining a filter is defining the filter predicate.
We envision that the user will be able to define a filter
predicate just as they would a conditional breakpoint (which
is a predicate over program states). More complex filter pred-
icates may rely on the output of other plug-in capabilities or
pipelines; a domain specific language might be introduced
to handle these cases.

In our running example, the developer would like to
use RefactorSuggest to generate refactoring sug-
gestions (source changes). However, she would like to
filter the actions so that the proposed set only in-
cludes actions that will not degrade performance. She
can use the VersionControl-PerformancePredict
pipeline created in the last section to create a filter. Note,
however, that the output type of RefactorSuggest —
{(source<java>, action)∗} — is incompatible with the



{(source<Java>,action)*}

Filter Predicate
Merge and Predict Pipeline

source<Java> → number

Refactor Suggest
source<Java> → 
{(source<Java>,action)*}

Suggest Changes

Applier
(source<Java>,
(source<Java>, action)) → 
source<Java>

(source<Java>, (source<Java>,action)) → bool

number → bool

Threshold

Suggested Change Filter

Apply Changes, Merge and Threshold By Performance

Filter Suggested Changes using Filter Predicate
{(source<Java>,action)*} → {(source<Java>,action)*}

source<Java>

Program Suggested Changes

Figure 2. A pipeline that provides refactoring suggestions that do not harm the program’s performance when merged. A set of raw refactoring suggestions
are passed to a filter. The filter uses a predicate that applies a refactoring to produce a new source, and then analyzes the new source with a (reusable)
pipeline that performs a merge and estimates the merged source’s performance. When thresholded, the result is the set of refactoring suggestions that do
not harm performance when merged.

input type source<java> of the VersionControl-
PerformancePredict pipeline.

The built-in applier capability: To solve this problem,
we include a built-in Applier capability in the ecosystem,
which applies a function to a value; the capability has type
(τ1, τ1 → τ2) → τ2.

With the applier prepended to the merge performance
pipeline, the user can use the pipeline to specify a predicate
for RefactorSuggest based on performance values. For
example, the predicate might be defined to block actions
with corresponding performance values lower than some
threshold. The end result, shown in Figure 2, is that changes
suggested by RefactorSuggest are filtered according to
the estimated performance of the program when the changes
are merged with the repository.

III. EXAMPLES OF PLUG-IN SYNERGIES

This section describes synergies between existing plug-ins
(and tools) that could be captured via the ecosystem.

A. Higher-order Synchronization Feedback

Crystal is a speculative analysis tool that monitors a
developer’s local version control repository (5), providing a
real-time alert when the local repository comes into conflict
with the master repository or another developer’s local
repository. In addition to reporting textual conflicts, Crystal
can report higher-order conflicts, such as when a merge
would cause a compilation error, or the merged program
would fail the test suite.

Our system enables the core functionality of Crystal to be
built by the IDE’s end-user (though a plug-in would have to
provide capabilities for merging with other local reposito-
ries). This would make attaching additional analyses, such
as a performance check, easy. The capabilities definitions
for the pipelines that provide the higher level analyses are
shown in Table II.

B. Dynamic (Testing) Feedback in Verification Mode

The Extended Static Checker for Java (ESC/Java2) plug-
in (1) provides a “verification” perspective (mode) in
Eclipse. In verification mode, the developer can invoke
ESC/Java2 to find potential run-time errors in a program

annotated with Java Modeling Language (JML) annotations.
Warnings emitted by ESC/Java2 are marked in the source
using Eclipse’s standard marker mechanism. Essentially, the
plug-in is a GUI wrapper for the ESC/Java2 tool itself; its
capabilities are shown in Table II.

1) Contract Checking: If a developer has a correct
program execution (e.g., from a passing test suite), that
execution can be used to invalidate contracts. A tool pro-
viding this analysis might consume a program (and test
suite), producing warnings for the invalidated contracts. The
runtime checking capability is shown in Table II.

2) Contract Inference and Suggestions: Many tools exist
which can infer JML contracts for a program. One such tool
is Daikon (6), which uses a program trace to infer object
invariants and method contracts via machine learning. Its
capability is shown in Table II.

Since Daikon consumes a trace, it makes sense to use
Daikon as part of a pipeline which includes a capability
for producing traces. A good choice might be a plug-
in for Chicory (Daikon’s front-end), which has the in-
terface source<bytecode> → source<trace>. So, a
pipeline consisting of: a compiler (source<java> →
source<bytecode>), Chicory, and Daikon would produce
contract suggestions for a program.

C. Testing Feedback in Development Mode

For most developers, development and testing are two
different activities. Saff and Ernst introduced continuous
testing, a technique in which regression tests are run contin-
uously during development with the aim of reducing wasted
development effort (8). Their Eclipse plug-in (described
in (9)) runs a project’s JUnit test suite in the background
whenever the developer saves the project; failed tests are
reported alongside compilation errors.

In our model the end-user would be able to create the core
continuous testing functionality simply by using the JUnit
capability; the user could also easily create a filter to hide
action suggestions that cause tests to fail.

D. Code Clone Feedback During Development

Code clones are syntactically or semantically similar
program fragments that appear at multiple locations in a



Example Plug-In Capabilities
Crystal (5) Merge Analysis Section III-A
Merge Conflicts source<text> → {location<line>∗}
Compile source<java> →

{label<text, string>∗}
Test source<java> → {label<test, bool>∗}
Esc/Java2 (1) Verification Section III-B
Check source<java> →

{label<text, string>∗}
Suggest source<java> →

{label<text, string>∗}
Runtime Contract Checking Section III-B1
Check source<java> →

{label<text, string>∗}
Daikon (6) Invariant Detector Section III-B2
Infer source<trace> →

{label<method, string>∗}
Simian (7) Code Clone Detector Section III-D
Detect ∀L <: text. (source<L> →

{label<text, location < text >>∗}
Debugging Information Section III-E
Code Churn source<text> →

{label<line, number>∗}
Code Coverage source<java> →

{label<line, number>∗}

Table II
PLUG-IN CAPABILITIES FROM SECTION III. FOR SIMPLICITY, WE
ASSUME THAT TEST SUITES ARE PART OF THE PROJECT SOURCE.

codebase. Often introduced via copy and paste actions, code
clones impair software maintainability since developers may
fail to fix all the clones when fixing a bug (10). Detecting
clones in real-time during development can point developers
to existing code, preventing unnecessary duplication which
can introduce new bugs (existing code has presumably been
tested or used in production).

A bevy of tools and plug-ins exist to detect, visualize, and
manage clones (11). Many detectors, such as Simian (7) can
work with multiple file types, using special analyses when
possible. The published capability can be written generically
(see Table II), though the plug-in performs a type-specific
analysis.

E. Augmenting Debugging Mode

The debugging mode typically contains views of the
program source, stack trace, and expression evaluation. In
the plug-in ecosystem, users can easily augment these views
with information about code churn or test coverage.

Empirical evidence suggests that areas with relatively high
code churn are likely to contain more bugs (12). Similarly,
areas with low or no test coverage may be more likely to
contain bugs (13). A test suite cannot detect a bug if it does
not execute the line that contains the bug.

A developer can leverage these insights when debugging
by overlaying the churn or test coverage in the source view,
e.g., via a heat map, in order to focus her efforts on locations
with high churn and/or low coverage. The capabilities, which
produce numeric scores for lines, are shown in Table II.

IV. DISCUSSION

In this section, we address the implications and limitations
of the model. By and large, the limitations can be addressed
by tracking additional information in the model.

A. Informing Plug-In and Tool Design

In the introduction, we described a conceptual model of
IDEs in which the IDE and plug-ins consist of modes,
analyses, views, and actions. Table I outlined where existing
features, and the capabilities described in Section III fall. A
benefit of presenting the information in this form is that it
naturally poses questions of the form “What would happen
if item X in box A was also in box B?” Asking this question
for code churn led us to suggest marking code churn in the
source view when debugging in Section III.

In Section II we presented a type system for plug-in
interaction. The type system eliminates nonsensical plug-
in combinations. Additionally, the type system provides a
principled way to explore the plug-in (tool) design space,
allowing users to find useful, but non-obvious combinations
of plug-ins (tools) with compatible capabilities. When com-
bined with our IDE model, the result is a powerful tool for
inventing new program analyses and tools.

B. Change Analysis

In the model presented, a program analysis produces a
result τ from a single source. In many cases, the user
would like a comparative analysis instead. A simple way to
perform comparative analysis would be to run the analysis
on both versions of the source, comparing the results of
the analysis; we could provide an interface for the end-user
to create custom change analyses, just as they can create
custom filters.

More expressive change analyses would rely on informa-
tion about the specific action; this would involve adding
metadata to the source → source type, which is currently
just a function type (arrow).

C. Performance

Both the IDE and developer have bounded resources.
Therefore, some capabilities are neither tractable nor desir-
able — a developer likely will not wait for the entire test
suite to run when viewing a refactoring preview.

Minimal Analyses: In many cases, a partial analysis
that targets the user’s active focus (e.g., the active source
file) is sufficient and sound. In these cases, a plug-in should
publish both full and partial analyses. Code clone detection
is a prime example. While detection is typically performed
over an entire project, clone search using the active file
as a query is likely to be sufficient during development.
Unfortunately, providing the partial contribution can require
additional analyses, e.g., determining which tests must be
rerun by analyzing a callgraph.



Planning and Reuse: Like a database query processing
engine, the IDE can and should plan pipeline evaluation
to minimize resource usage. Since capabilities are assumed
to be pure in the model presented, opportunities for result
reuse should abound. Relaxing the purity assumption would
severely hamper planning unless the impurities are modeled
properly (e.g., with a form of separation logic).

Developer Control: Users understand their information
needs best. When enabling a plug-in’s capability, the user
should be able to specify at least two things:

• Grace Time: the maximum time to wait for the capa-
bility, and

• Background: whether or not to proceed until the capa-
bility is complete.

Grace time is useful for pessimistic analyses; background
mode is useful for pipelines that contribute to a view that
can display results asynchronously.

V. RELATED WORK

The core idea presented in this paper is not new; Unix-
based operating systems allow users to compose the inputs
and outputs of programs in a data-driven manner via piping.
Windows PowerShell offers similar with an object-pipeline
built on top of .NET objects. Our formalization reconciles
the pipepline concept with plugins and the IDE.

Speculation: Speculation is an area of research which
aims to inform developer decision by anticipating developer
actions and then performing analysis on the concrete arti-
facts generated by speculatively applying each action (14).
Both our motivating example and Crystal (5), described in
Section III-A, are examples of speculative analyses. The
ecosystem described in this paper is complementary to
speculation; we’ve shown that the system enables the end-
user to define their own speculative analyses.

Mashups: Mashups are (typically) websites that com-
bine information from multiple sources to produce new
insights. Yahoo Pipes is a visual programming language
designed to enable lay-users to create mashups by com-
bining existing web data feeds (15). Domain-specific visual
programming languages are common in dataflow program-
ming (16). The primary difference between mashups and our
design is that mashup data sources are typically independent.

Formal Plug-In Architecture Models: Chatley et al.
formalize a general plug-in architecture in Alloy for self-
assembling systems (17). The architecture, which is based
on typed “pegs” and “holes” is designed to enable a system
to automatically combine plug-ins at runtime based on their
interfaces. While this basic concept applies to our work as
well, their formalization depends heavily on rules for self-
assembly. Our model benefits from having the developer as
a final oracle of whether or not a combination is sensible.

VI. CONCLUSION

We have presented a plug-in ecosystem for IDEs that
enables the end-user to combine data-driven plug-in capa-

bilities to create new insight. Each plug-in publishes its
capabilities to the IDE. Typing rules prevent nonsensical
plug-in combinations, and inform the design of new tools
and plug-ins providing capabilities that other plug-ins can
independently leverage.

ACKNOWLEDGMENTS

We thank Colin Gordon for his comments on an early draft
of this paper. This material is based upon work supported
by the National Science Foundation Graduate Research
Fellowship under Grant No. DGE-0718124.

REFERENCES

[1] (2012, Feb) ESC/Java2. [Online]. Available:
http://kindsoftware.com/products/opensource/ESCJava2/

[2] B. C. Pierce, Types and programming languages.
Cambridge, MA, USA: MIT Press, 2002.

[3] (2012, Mar) Quick Fix. [Online]. Available:
http://bit.ly/eclipse-quickfix

[4] (2012, Mar) NI LabVIEW. [Online]. Available:
http://www.ni.com/labview/

[5] Y. Brun et al., “Proactive detection of collaboration
conflicts,” in Proc. ESEC/FSE’11, 2011.

[6] M. D. Ernst et al., “The Daikon system for dynamic
detection of likely invariants,” Sci. Comput. Program.,
vol. 69, no. 1–3, pp. 35–45, Dec. 2007.

[7] (2012, Mar) Simian - Similarity Analyser. [Online].
Available: http://www.harukizaemon.com/simian/

[8] D. Saff and M. D. Ernst, “Reducing wasted develop-
ment time via continuous testing,” in Proc. ISSRE’03,
2003.

[9] ——, “Continuous testing in Eclipse,” in Proc. eTX’04,
March 2004.

[10] E. Juergens et al., “Do code clones matter?” in Proc.
ICSE’09, 2009.

[11] C. K. Roy et al., “Comparison and evaluation of code
clone detection techniques and tools: A qualitative
approach,” Sci. Comput. Program., vol. 74, pp. 470–
495, May 2009.

[12] N. Nagappan and T. Ball, “Use of relative code churn
measures to predict system defect density,” in Proc
ICSE’05, 2005.

[13] W. E. Wong et al., “Effective fault localization using
code coverage,” in Proc. COMPSAC’07, 2007.

[14] Y. Brun et al., “Speculative analysis: Exploring future
states of software,” in Proc. FoSER‘10, 2010.

[15] (2012, Mar) Yahoo Pipes. [Online]. Available:
http://pipes.yahoo.com/pipes/

[16] W. M. Johnston et al., “Advances in dataflow program-
ming languages,” ACM Comput. Surv., vol. 36, pp. 1–
34, March 2004.

[17] R. Chatley et al., “Modelling a framework for plugins,”
in Proc. SAVCBS’03, 2003.


