
Transactional Concurrency Control for Intermittent,
Energy-Harvesting Computing Systems

Emily Ruppel
Carnegie Mellon University

Pittsburgh, U.S.A.
eruppel@andrew.cmu.edu

Brandon Lucia
Carnegie Mellon University

Pittsburgh, U.S.A.
blucia@andrew.cmu.edu

Abstract
Batteryless energy-harvesting devices are computing plat-
forms that operate in environments where batteries are not
viable for energy storage. Energy-harvesting devices oper-
ate intermittently, only as energy is available. Prior work
developed software execution models robust to intermit-
tent power failures but no existing intermittent execution
model allows interrupts to update global persistent state
without allowing incorrect behavior or requiring complex
programming. We present Coati, a system that supports
event-driven concurrency via interrupts in an intermittent
software execution model. Coati exposes a task-based inter-
face for synchronous computations and an event interface
for asynchronous interrupts. Coati supports synchronizing
tasks and events using transactions, which allow for multi-
task atomic regions that extend across multiple power fail-
ures. This work explores two different models for serializing
events and tasks that both safely provide intuitive seman-
tics for event-driven intermittent programs. We implement a
prototype of Coati as C language extensions and a runtime li-
brary. Using energy-harvesting hardware, we evaluate Coati
on benchmarks adapted from prior work.We show that Coati
prevents failures when interrupts are introduced, while the
baseline fails in just seconds. Moreover, Coati operates with
a reasonable run time overhead that is often comparable to
an idealized baseline.

CCS Concepts • Computer systems organization →
Embedded software; Reliability.

Keywords intermittent computing, event-driven concur-
rency, transactions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00
https://doi.org/10.1145/3314221.3314583

ACM Reference Format:
Emily Ruppel and Brandon Lucia. 2019. Transactional Concurrency
Control for Intermittent, Energy-Harvesting Computing Systems.
In Proceedings of the 40th ACM SIGPLANConference on Programming
Language Design and Implementation (PLDI ’19), June 22–26, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 16 pages. https://doi.
org/10.1145/3314221.3314583

Transaction
Task1r1 = X

TransTo(Task2)

Event
Atomic
w.r.t.
events

intermittence
safe X++

Y++

serialize
after

Task3

Task2r2 = Y

TransTo(Task3)

Z = f(X,Y)

TransTo(...)

Task1

Interru
pt

Figure 1. Coati program.The program contains three tasks
encapsulated in a transaction and an asynchronous event.
The event cannot violate the atomicity of the transaction.

1 Introduction
Batteryless energy-harvesting devices are tiny, sensing, com-
putation and communication platforms [15, 29, 72, 88] that
can operate in environments that prevent the use of tradi-
tional batteries due to extreme temperatures [25, 57, 87],
difficulty of maintenance [16, 38, 45, 68], or restrictions on
weight and size [45, 68, 87]. Such a device harvests a weak
input power supply, buffering energy in a capacitor until
it accumulates a useful amount. The device then uses the
buffered energy to operate in a short burst, before powering
off to await more energy. A device’s energy buffer size is
highly application- and platform-dependent and a power
failure may occur at any time, up to hundreds of times per
second with a small buffer [12, 52, 69].
The resulting intermittent software execution model on

such a device is increasingly well studied [13, 15, 31, 52–
55, 69, 82], but intermittent systems have some key, unmet
needs. Systems often rely on atomic tasks [5, 13, 31, 52, 55] or
checkpoints [33, 54, 58, 82], to ensure that data in volatile and
non-volatile memory remain consistent despite frequent, un-
predictable power failures. Most prior work on intermittent
computing focused solely on memory consistency [13, 33,

1085

https://doi.org/10.1145/3314221.3314583
https://doi.org/10.1145/3314221.3314583
https://doi.org/10.1145/3314221.3314583

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Emily Ruppel and Brandon Lucia

52, 55, 82] and preserving progress [6, 7, 53]. Recent work
addressed input/output (I/O), ensuring that computations
were timely in their consumption of data collected from sen-
sors [15, 31, 86]. However, no prior work on intermittent
computing provides clear semantics for programs that use
event-driven concurrency, handling asynchronous I/O events
in interrupts that share state with transactional computa-
tions that execute in amain control loop. The idiomatic use of
interrupts to collect, process, and store sensor results is very
common in embedded systems. The absence of this event-
driven I/O support in intermittent systems is an impediment
to developing batteryless, energy-harvesting applications.

Combining interrupts and transactional computations in
an intermittent system creates a number of unique problems
that we address in this work using new system support. First,
an interrupt may experience a power failure while updating
persistent, shared state, leaving the state inconsistent on
reboot. As Section 3.1 shows, the inconsistent shared state
is likely to remain inconsistent because it is unintuitive to
checkpoint and restart an event-driven interrupt’s execu-
tion after a power failure. Second, task-based intermittent
execution models assume that tasks will repeatedly attempt
to execute idempotently, allowing them to selectively buffer
data and commit it when a task ends[13, 33, 52, 55, 82]. An
unmoderated interrupt may cause a task’s re-execution to
be non-idempotent, violating the underlying assumption
of task-based intermittent execution systems that allows
only selectively buffering state. Consequently, these prior
approaches may lose updates or produce inconsistent state
in an intermittent execution. An appealing alternative is
to disable all interrupts during task execution, with behav-
ior like TinyOS atomics [21, 48]. However, unlike the small
amount of code typically protected by TinyOS atomics (e.g.,
synchronization), intermittent execution requires all code
to be in a task; disabling interrupts during any task blocks
interrupts for most of a program’s execution.

This paper presents Coati1, which adds concurrency con-
trol for event-driven I/O to an existing task-based intermit-
tent programming and execution model that does not sup-
port interrupts. The key contribution of Coati is to define an
execution model that safely serializes atomic, transactional
computations with concurrent, event-driven interrupts dur-
ing an intermittent execution. Borrowing from prior work on
event-handling in embedded operating systems (OS) [21, 48],
Coati defines events as shown on the right of Figure 1, which
are regions of code that atomically process I/O and occur
asynchronously. Borrowing from prior work on intermit-
tent systems [13, 31, 55], as well as embedded OS [21, 48],
Coati defines tasks, which are regions of code that are atomic
with respect to power failures and atomic with respect to
events. Coati borrows from prior work on transactional mem-
ory [8, 24, 27, 28, 59, 73] defining transactions, which allow

1 Concurrent Operation of Asynchronous Tasks with Intermittence

sequences of multiple tasks to execute atomically with re-
spect to events. Coati’s support for events and transactions
is the main contribution of this work. Coati provides the
critical ability to ensure correct synchronization across re-
gions of code that are too large to complete in a single power
cycle. Figure 1 shows a Coati program with three tasks con-
tained in a transaction manipulating related variables x, y,
and z, while an asynchronous event updates x and y. Coati
ensures atomicity of all tasks in the figure, even if any task
individually is forced to restart by a power failure.
This work explores the design space of transaction, task,

and event implementations by examining two models that
make different trade-offs between complexity and latency.
Coati employs a split-phase model that handles time-critical
I/O immediately in a brief interrupt handler, but defers pro-
cessing the interrupt’s result until after the interrupted task
or transaction completes, ensuring the task or transaction re-
mains atomic. We also examine an alternative bufferedmodel
that fully buffers all memory updates made in a transaction
and immediately processes events, but on a memory conflict
between an event and transaction the event’s memory effects
are discarded. In contrast, Coati’s split-phase model is effi-
cient, requiring neither full memory buffering nor conflict
detection for transactions and events.
We prototyped Coati as a set of extensions to the C lan-

guage and a runtime library that ensures safe, intermittent
operation while supporting tasks, events and transactions.
We evaluated Coati on a set of benchmarks taken from prior
work [55], running on a real intermittent energy-harvesting
system [15]. The data reveal that Coati prevents incorrect
behavior of event-driven concurrent code in an intermit-
tent execution. In contrast, we demonstrate that an existing,
state-of-the-art task-based intermittent system produces an
incorrect, inconsistent result in nearly all cases. This work
makes the following contributions:
• An exploration of the challenges of implementing shared
memory concurrency control in an intermittent execu-
tion on an energy harvesting, computing system.

• An execution model for concurrency that defines the
interaction between transactional computational tasks
and asynchronous events in an intermittent execution.

• An API and runtime that support intuitive semantics for
task, transaction and event interaction, without the need
to reason about complex pre-emptive behavior.

• An evaluation with real applications on real hardware
showing that Coati supports event-driven concurrency
in an intermittent execution with reasonable overheads,
where prior system support fails.

1086

Transactional Concurrency Control for Intermittent... PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

2 Background and Motivation
This paper is the first to simultaneously address the chal-
lenges of concurrency control for event-driven I/O and atom-
icity for computations in an intermittent system. Event-
driven I/O faces the challenge of managing asynchronous
interactions between a program’s main computational work
loop and operations in interrupts. Intermittent execution
faces the challenge of spanning a program’s execution across
unpredictable power failures, while ensuring that memory
and execution context remain consistent. Coati is motivated
by the combination of these two challenges: handling asyn-
chronous I/O in interrupts during a consistent, progressive in-
termittent execution. Together, these challenges lead to fun-
damental correctness problems that are not well-addressed
by existing hardware or software systems for intermittent
computing [6, 7, 13, 33, 54, 55, 82, 86].

2.1 Intermittent Computing
Energy-harvesting, intermittent systems are embedded com-
puting, sensing, and communications platforms that oper-
ate using energy extracted from their environment. While
batteries are appropriate for many applications [1, 19, 67],
intermittent computing is useful when a system cannot use
a battery because of a restriction on a device’s size, weight,
operating temperature, lifetime, serviceability, or operating
current. Batteryless operation enables use deeply embedded
in civil infrastructure [38], in the body [16, 45, 68], and in
heavily constrained chip-scale satellites [87].
Several experimental intermittent computing platforms

exist [15, 29, 72, 75, 88]. These devices are batteryless and
operate by harvesting weak (e.g., µW) input energy sources
(e.g., RF, vibration) and buffering the energy in a capacitor.
After buffering a quantum of energy, the device operates
for a brief interval (e.g., 50ms), using sensors, processing,
storing data in volatile and non-volatile [80, 81] memory, and
communicating [15, 32, 51, 60]. Operating power is typically
much higher than harvestable power and the device rapidly
depletes its energy supply then powers off to recharge.
Software on an energy-harvesting device executes inter-

mittently, making progress during operating bursts. At each
power failure the execution loses volatile program state (e.g.,
stack, registers) and retains non-volatile program state (e.g.,
some globals). Power failures compromise forward progress
and can leave program state inconsistent, for example, if
power fails during an update to a multi-word non-volatile
data structure. Figure 2a, left, shows an excerpt of a plain
C program that performs activity recognition, using sensor
data. The code loops over a rolling window of data, com-
puting statistics about the data, assembling a feature vector,
and classifying the data (the figures omit classification code
for clarity). The code includes an interrupt handler (marked
with __interrupt) that, when a sensor has data ready, adds

them to the window, increases the count of samples col-
lected, and returns. The interrupt asynchronously produces
the data that the program classifies. Figure 2b, left, shows
the program intermittently executing. As power fails, the
intermittent execution does not make forward progress, and
repeatedly restarts from main().

Prior work used programming and runtime support to op-
erate reliably, avoiding inconsistent memory states despite
frequent, arbitrarily-timed failures [13, 31, 33, 35, 52, 54, 55,
58, 82]. Some approaches [33, 52, 54, 69, 82] collect periodic
checkpoints of volatile state to preserve progress. After a
power failure, execution resumes from a checkpointed con-
text. Resuming from a naively placed checkpoint can make
execution context and non-volatile memory inconsistent,
requiring conservatively placed checkpoints at some data de-
pendences identified by a compiler [82] or programmer [52].
A task-based intermittent programming system asks the

programmer to break a program into regions of code that the
programming model guarantees will execute atomically and
idempotently. A programmer ensures that a task will finish
within the device’s energy budget by conservatively testing
the code before deployment [15] or using energy debugging
tools [12, 14]. A task-based model’s runtime system imple-
mentation ensures task atomicity by ensuring that repeated
re-executions of a task are idempotent. An idempotent task
always produces the same result when re-executed, never
overwriting its inputs. The idempotence of tasks allows the
runtime system to track the executing task’s identifier and
immediately jump to the start of that task after a reboot; a
task is a top level function and does not require restoring
execution context (e.g. stack and register values). Different
systems ensure idempotence differently, using checkpoint-
like boundaries [31], static data duplication [13], a compiler-
inserted logging [5], and task-privatization [55].
Figure 2a shows the example program re-written to use

tasks, in an Alpaca-like [55] language. The code’s main func-
tions map to tasks and arrows indicate control-flow. The in-
terrupt is its own task and has no control-flow arcs because
it is asynchronous. Figure 2b shows the task-based program
executing intermittently. A task runtime buffers updated
values(the figure excludes this "privatization" code [55]). A
task preserves progress when it completes, commits its up-
dates, and transitions to another task. After power failure,
execution restarts at the most recent task, instead of main();
in the figure, FeaturizeWin resumes after the failure.
This work focuses on adding transactional concurrency

control to task-based systems in particular due to perfor-
mance and programmability considerations. First, tasks have
lower runtime overhead than static checkpointing [56]. Sec-
ond, tasks are a simple lexical scope defining an intermit-
tent failure-safe code region. Third, tasks avoid dynamic
checkpoint behavior [7, 35] that is difficult to reason about
statically, especially with event-driven I/O.

1087

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Emily Ruppel and Brandon Lucia

1:winNum = countValid(Win[])
2:if(num<Min)TransTo(t_Init)
3:(Mx,My,Mz) = Mean3D(Win[])
4:(SDx,SDy,SDz)=StDv3D(Win[])
5:TransTo(t_FeaturizeWin)

Task: ClassifyFeatVec

Task: WindowStats

Task: FeaturizeWin
6:winMag = Mag3D﴾Win[]﴿
7:featVec = [winMag,
8: SDx,SDy,SDz,
9: Mx,My,Mz]
10:TransTo(t_ClassifyFeatVec)

1:windowStats﴾﴿{
2: winNum = countValid(Win[])
3: if(num<Min)call(t_init)
4: (Mx,My,Mz) = Mean3D(Win[])
5: (SDx,SDy,SDz)=StDv3D(Win[])
6:}
7:featurizeWin(){
8: winMag = Mag3D(Win[])
9: featVec = [winMag,
10: SDx,SDy,SDz,
11: Mx,My,Mz]
12:}
13:main(){
14: while(true){
15: windowStats()
16: featurizeWin()
17: classifyFeatVec()
18:}}
19:__interrupt Sensor(...){
20: (x,y,z) = datarecv()
21: n = numrecv()
22: Add(Win[],n,x,y,z)
23: totCnt += n }

Plain C Code

1:__interrupt Sensor(...){
2: (x,y,z) = datarecv()
3: n = numrecv()
4: Add(Win[],n,x,y,z)
5: totCnt += n }

Intermittent Task-based Code

 ...
11:TransTo(t_WindowStats)

(a) Task Decomposition. Edges in the task graph represent
control-flow. The sensor interrupt has no in-edges in the task
graph because an interrupt is asynchronous.

Plain C Code
winNum=countValid(Win[])
if(num<Min)TransTo(t_Init)
(Mx,My,Mz) = Mean3D(Win[])
(SDx,SDy,SDz)=StDv(Win[])

Task: WindowStats

Task: FeaturizeWin

Task-Based Code

Task: FeaturizeWin
winMag = Mag3D﴾Win[]﴿
featVec = [winMag,
 SDx,SDy,SDz,
 Mx,My,Mz]

 Start Operating

 Start Operating
Program restarts;

no progress

Time

Recharging

O
peratingEn

er
gy

2 4

Power Fails

windowStats()
num=countValid(Win[])
if(num<Min)return;
(Mx,My,Mz) = Mean3D(Win[])
(SDx,SDy,SDz)=StDv(Win[])
featurizeWin()

Task restarts;
preserves progress

winMag = Mag3D﴾Win[]﴿
featVec = [winMag,

windowStats()
num=countValid(Win[])
if(num<Min)return;
(Mx,My,Mz) = Mean3D(Win[])
(SDx,SDy,SDz)=StDv3D(Win[])
featurizeWin() Power Fails

1

Recharging

O
perating

1

2

3

3

4

(b) Intermittent Execution.As the execution proceeds the de-
vice powers on and off. The plain C code fails to make progress,
but the task-based code latches progress after each task.

Figure 2. Plain C code vs intermittent task-based code. Task-based code makes progress despite power failures.

2.2 Concurrency in Embedded Devices
Embedded systems in cyber-physical applications must asyn-
chronously interact with unpredictable stimuli from their
environment often using peripherals to perform I/O. Embed-
ded systems typically handle such asynchronous operations
using interrupts. An interrupt is a signal triggered by an asyn-
chronous event that is moderated by hardware and eventu-
ally delivered to a software interrupt service routine (ISR). An
ISR can perform application-specific event-handling opera-
tions, including interacting with peripherals (i.e., the one that
triggered the interrupt), performing arbitrary computation
and manipulating variables. An asynchronous ISR preempts
the program’s main thread of control, and may concurrently
(although not in parallel) access program state. After an ISR
completes, control returns to the point in the program at
which the preemption occurred.

Event-driven concurrency of interrupt handlers and pro-
gram code requires embedded software to synchronize ac-
cesses to shared data. Code may synchronize data using mu-
tex locks, reader-writer locks, or semaphores to establish crit-
ical regions that atomically read or update data. TinyOS [21,
48] allows specifying atomic operations that, in effect, dis-
able interrupts for their duration. One use of atomic is to
synchronize direct access to shared data by an interrupt and
a program. While atomic program operations execute, in-
terrupts are disabled, instead of immediately being handled.
TinyOS-style atomics also allow building synchronization
primitives, which may be useful when an application cannot
disable interrupts for a long time (i.e., to remain responsive).

A key problem addressed by Coati is that task-based inter-
mittent programming systems do not support interrupts and
existing concurrency control mechanisms do not gracefully
handle intermittent operation.

2.3 Benefits of Interrupts in Intermittent Systems
Event-driven interrupts are crucially important for intermit-
tent systems applications. Recent work has demonstrated
the value of local DNN inference on intermittent devices
to enable complex, event-driven applications [22]. Without
interrupts, event-driven applications must alternate between
processing event data and polling for new events. Computa-
tionally intensive event processing causes long unresponsive
periods because computationmonopolizes the processor. The
device will not observe a new event until it processes an older
one. Intermittent execution increases the length of the un-
responsive periods because the application must frequently
wait to recharge after depleting its buffered energy.

Figure 3 shows data from a high level software simula-
tion of an event-driven image processing application that
captures bursts of events (e.g. a pack of coatis passing by a
wildlife camera). The simulation compares the fraction of
events captured over an hour using interrupts (the int-* lines)
versus polling (the poll-* lines) for a continuously-powered
(*-CP) and energy-harvesting (*-EH) system. A burst of 5
events (e.g. coatis in close proximity) occurs with an expected
interarrival time of 3 seconds. An event lasts 1.2 seconds,
twice the device’s recharge time (i.e., recharging does not
cause missed events). Our simulation models powered-on,
recharge, and data collection times using measurements of

1088

Transactional Concurrency Control for Intermittent... PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

the Capybara platform with its onboard MCU at 8MHz [15].
The simulated workload models the intermittent MNIST im-
plementation from prior work [22, 44].
Each event requires 6 seconds of computation while the

device is powered on, and the device may enqueue up to 16
events (a 16KB event queue). We assume a low power camera
with a separate energy buffer and harvesting source [30]. The
simulation shows that even with continuous power, polling
captures less than 60% of the events because the system
misses events that occur while processing prior events. The
effect is exacerbated under harvested energy because the
time to recharge extends the time to process the first event
in the burst, and prevents the system from capturing any
additional events. Introducing interrupts allows the system
to capture all events with continuous power. Interrupts on
harvested energy (int-EH) converges to capturing 100% of
events once the burst interarrival time is long enough to
prevent the event queue from saturating. The data emphasize
the need for interrupts in intermittent systems.

0 100 200 300 400 500 600 700 800
Expected inter-burst time (s)

0
20
40
60
80

100

E
ve

nt
s

C
ap

tu
re

d
(%

) poll-CP
int-CP
poll-EH
int-EH

Figure 3. Interrupts support bursts of events. Using
interrupts, the simulated energy-harvesting device (int-EH)
outperforms the continuously powered, polling baseline
(poll-CP) if there is time to recharge between bursts

3 The Challenge of Intermittent
Event-Driven Concurrency

Naively combined, existing solutions for intermittence and
event-driven concurrency can cause incorrect and unintu-
itive behavior. Event-driven, concurrent execution is incor-
rect in the presence of intermittence: simply using TinyOS-
style atomic concurrency control in an intermittent system
behaves incorrectly when power fails. Additionally, both
static checkpointing and task-based intermittent execution
can be incorrect or inefficient in the presence of interrupts.

3.1 Interrupts + Intermittent Operation
Event-driven code behaves incorrectly if power fails during
an interrupt. The key problem is that even using atomic
operations, if power fails during an ISR, the ISR may have
only partially updated a multi-byte data structure. On reboot,
intermittent execution resumes in the most recently execut-
ing task or from the most recent checkpoint. If the program
accesses the data partially updated by the ISR, the program
behaves incorrectly. An (unintuitive) alternative approach is

to restart execution after a power failure in the context of
the ISR. The problem with restarting in an ISR after a power
failure is that important device state may be unavailable on
reboot (because a peripheral reset). Moreover, the device may
have been inoperational for an arbitrary duration, violating
timeliness constraints on the ISR [31].

1:n = len﴾Win[]﴿
2:count = totCnt
3:assert﴾n==count﴿

Restart task

Power Failure

Sensor Interrupt
I1:﴾x,y,z﴿=
 datarecv()
I2:n=numrecv﴾﴿
I3:Add(Win[],n,
 x,y,z)
I4:totCnt += n

Interrupt!

Interrupt updates Win[] but
not totCnt, due to power
failure causing assertion to fail

Task: Check
1

2

3

4

Figure 4. The “Interrupt Interrupted” problem. The in-
terrupt updates Win[]’s length without updating totCnt,
leaving the two inconsistent.

Figure 4 illustrates this “Interrupt Interrupted” problem
with example task-based code. The figure adds a task to the
program that checks the consistency of the size of Win[]
and totCnt, which should always be equal. The interrupt
adds new entries to Win[], but power fails before it updates
totCnt. When control returns to the task, the assertion fails
because the data are inconsistent.
The ISR can produce partial updates even with the pri-

vatization analysis of a task-based intermittent execution
framework [55, 82], treating the ISR as a task. Privatization
analysis identifies data to privatize to a task. A task buffers
updates to privatized data and commits updates only when
the task completes. Privatization analyses in intermittent
execution frameworks assume that a task repeatedly exe-
cutes until successfully completing. To reduce buffering and
commit cost, the analysis only privatizes data that are read,
then written by the task (i.e., finding WAR dependences).
Such “WAR”-based privatization prevents data written by
a failed attempt to execute the task from being visible to a
read in a re-execution of that task. Accesses to data not in-
volved in a WAR dependence directly update memory. Priva-
tization analysis works correctly for sequential intermittent
programs because they always re-attempt a failed task until
it completes. Existing privatization analyses [33, 55, 82] are
incorrect with interrupts: if power fails during an ISR that
only writes to a multi-byte data structure, a partial update
is unbuffered and made visible to the continuation of the
interrupted task after power resumes.

3.2 Synchronization + Privatization
Synchronization is also complicated by intermittent exe-
cution. TinyOS-style atomics are useful for building syn-
chronization primitives, such as flags and locks, enabling
synchronization operations to perform read-modify-update
operations that an ISR will not interrupt. Often a program

1089

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Emily Ruppel and Brandon Lucia

cannot disable interrupts during a long region of code, bar-
ring use of atomic and requiring use of such a synchro-
nization primitive. An intermittent task may leave a critical
region by updating a synchronization variable (unsetting
a flag or releasing a lock). If the intermittent task system
does not privatize the synchronization variable (i.e., because
it is not read then written by the task), the update directly
modifies main memory. If power fails after a task leaves a
critical region, execution resumes from the start of the task
which may be inside the critical region. The problem is that
the update made to the synchronization variable to leave the
critical region remains in memory. After the task restarts in
the critical region, an ISR may successfully enter its critical
region, leaving both the task and the ISR in the critical region,
which is incorrect. This problem also occurs in a checkpoint-
ing system if a programmer uses a lock to span multiple
static checkpoints. If power fails after the code has released
the lock and before it has reached the next checkpoint, on
reboot the scheduled code and the ISR will both be able to
enter the critical region.

Figure 5 shows the “False Flag” problem, which illustrates
how flag synchronization is complicated by intermittent op-
eration. The WindowStats and FeaturizeWin tasks compute
related properties of Win[]. Both should see the same values
in Win[], requiring them to be in a critical region protecting
Win[]. The flag flag controls access to the critical region,
preventing the interrupt from entering while WindowStats
and FeaturizeWin are executing. It is reasonable to use a
flag across multiple tasks, because one very long task would
exhaust the device’s energy supply, impeding progress.
The execution sets flag and proceeds through

WindowStats. The first attempt to run FeaturizeWin fails
just after clearing flag. The task restarts without restoring
flag=1 because flag is write-only; privatization does not
restore write-only data on reboot [52, 55, 82]. After restart,
the task is in the critical region. The interrupt immediately
fires, checks flag, sees it clear, and also enters the critical
region. The interrupt’s updates to Win[] violate the critical
region’s atomicity, leading to an inconsistency between
values computed by WindowStats and FeaturizeWin.

Privatization causes a symmetric "False Flag" problem
when the interrupt needs to send a signal to the task. A com-
mon programming pattern in embedded systems is to wait
in the main thread until ISR code updates a shared variable
that signals the main thread to continue. For instance, the
main thread might wait until a signal variable is set that indi-
cates new data has arrived, then the main thread will process
the data and clear the signal. However, in an intermittent
execution, if the read and the clear of the signal variable
happen in the same task, privatization redirects all accesses
of the variable to a private copy. Since the task only accesses
its private copy, writes to the variable in the ISR are not
visible until the task completes or the device powers down
and restarts the task.

Restart task

Sensor Interrupt
I0:if﴾flag﴿return
I1:﴾x,y,z﴿=
 datarecv()
I2:n=numrecv﴾﴿
I3:Add(Win[],n,
 x,y,z)
I4:totCnt += n

1

2
3

4

Task: WindowStats
0:flag = 1 //bar Win[] upd.
1:num = countValid(Win[])
2:if(num<MIN)TransTo(t_Init)
3:(Mx,My,Mz) = Mean3D(Win[])
4:(SDx,SDy,SDz)=StDv3D(Win[])
5:TransTo(t_FeaturizeWin)

Power Failure

flag is write-only, not privatized,
& not restored by task @ restart.

flag clears on power failure,
interrupt enters flag crit. reg.

6:winMag = Mag3D﴾Win[]﴿
7:flag = 0 //allow Win[] upd.
8:featVec = [winMag,

Task: FeaturizeWin

6:winMag = Mag3D﴾Win[]﴿
7:flag = 0 //flag already 0!
8:featVec = [winMag,
9: SDx,SDy,SDz,
10: Mx,My,Mz]
11:TransTo(t_ClassifyFeatVec)

Interru
pt!

Resume

Task restarts in flag crit. reg.
Interrupt & task both in crit. reg.
leads to Atomicity Violation!

5

Figure 5. The “False Flag” problem. When power fails
after FeaturizeWin clears flag, the task and the interrupt
are both in the critical region, violating atomicity.

4 Intermittent Interrupts with Coati
Coati is a programming API and runtime that allows a pro-
grammer to control event-driven concurrency in a task-based
intermittent execution system. Figure 6 shows an overview of
Coati’s use. Like prior intermittent execution systems (Coati
builds on Alpaca [55]), Coati asks the programmer to write
their program as a collection of tasks. A task is a function
with no callers that can include arbitrary code and explic-
itly transfers control to another task. Tasks communicate
by accessing global variables stored in persistent memory.
Coati tasks are atomic with respect to power failures because
Coati buffers a task’s updates to memory and commits them
on task completion, discarding them on a failure. A task in-
terrupted by a power failure idempotently re-executes until
progressing to the next task.

Programmer

Coati
Application

Write Coati
program w/

tasks, events &
transactions

Defines
tasks,

events &
transactions

Coati Runtime Library
Implements
buffering for

tasks & events

!
Serializes

events & tasks

Link

Energy-harvesting
Device

Deploy Coati-
enabled application

Correctly handle
event-driven I/O

Coati-enabled Program

! Specifies
shared

variables

Figure 6. Overview of Coati. The programmer codes using
Coati primitives and links the Coati-enabled program to the
Coati runtime, handling both intermittence and interrupts
so the app executes correctly when deployed.

1090

Transactional Concurrency Control for Intermittent... PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Coati allows the programmer to specify events. An event
is a special task that a programmer can use to process an
asynchronous interrupt. An event in Coati is similar to an
event in TinyOS [21, 48] in that an event may be concurrent
with a task and an event may share state with a task. The pri-
mary difference between tasks and events is that a task does
not explicitly transfer control to an event. Instead, an event
is associated with an asynchronous interrupt and invoked
automatically by Coati on that interrupt’s asynchronous oc-
currence. Coati also allows the programmer to define a trans-
action, which is a sequence of tasks that execute together
atomically with respect to events, while remaining individ-
ually atomic (and idempotently restartable) with respect to
intermittent power failures. Like TinyOS [48], Coati assumes
that events are short and relatively infrequent so that the ap-
plication can make forward progress. Further, Coati assumes
that the programmer correctly balances transaction length
with responsiveness requirements for processing events.

To correctly include events in an intermittent execution,
Coati must meet several requirements. First, Coati must
preserve task atomicity and idempotence despite asynchro-
nous events by serializing tasks’ and events’ updates to task-
shared variables. Second, Coati must support atomic regions
that extend beyond one reboot. Finally, Coati should not im-
pose a prohibitive overhead in terms of runtime or memory.

4.1 Interaction Between Tasks and Events
The main contribution of this work is defining how Coati’s
tasks, events, and transactions interact. We first describe
task-event interactions using the split-phase serialization
model used by Coati’s final design. Split-phase serialization
forces events to serialize after an interrupted task completes.
Returning to Figure 2a’s example code, Figure 7 shows how
events and tasks serialize.

Task: WindowStats
1:num = countValid(Win[])
2:if(num<MIN)TransTo(t_init)
3:(Mx,My,Mz) = Mean3D(Win[])
4:(SDx,SDy,SDz)=StDv3D(Win[])
5:TransTo(t_FeaturizeWin)

6:winMag = Mag3D﴾Win[]﴿
7:featVec = [winMag,
8: SDx,SDy,SDz,
9: Mx,My,Mz]
10:TransTo(t_ClassifyFeatVec)

Task: FeaturizeWin

Inte
rru
pt!

SensorEvent, Top
T1:﴾x',y',z'﴿=
 datarecv()
T2:n'=numrecv﴾﴿

Enqueue event bottom

B1:Add﴾Win[],
 n',x',y',z')
B2:totCnt += n'
SensorEvent, Bottom

Event top & bottom share
private data marked '

Run queued event bottom

Resume

Figure 7. Task and split-phase event interaction. Split-
phase events are separated into a top half which executes
immediately, and a bottom half which runs after the inter-
rupted task commits.

Split-phase Serialization. Split-phase interactions decou-
ple the asynchronous part of an event (i.e., the ISR and pe-
ripheral manipulations) and the shared data manipulation as-
sociated with the event. A split-phase event has a top, which
runs asynchronously at the interrupt, and a bottom which is
scheduled to run after the completion of the task that was
interrupted by the top of the event. Similar to tasklets in
Linux [50], event bottoms allow an interrupt to defer latency
tolerant work and quickly return to the interrupted task.
In Figure 7, the top of the event interrupts WindowStats
and executes immediately, while the bottom executes after
WindowStats completes. After the top of the event com-
pletes, execution resumes from the point of the interrupt in
the interrupted task, as shown in the figure. The top of a
split-phase event is not allowed to access any global, shared
state, avoiding the risk of violating a task’s idempotence.
Instead, the top of the event can privately buffer data to be
processed (e.g., sensor data, received radio packets), prepar-
ing them for use by the event’s bottom. In the figure, private
data have a ’: x’, y’, z’, and n’ are only accessible by the
interrupt’s top and bottom. The event’s bottom, serialized
after the interrupted task, is allowed to access arbitrary state.
The event bottom buffers all memory updates, like a task,
and atomically commits those updates on completion. The
figure shows how the event’s bottom adds to Win[] the data
sensed by the event’s top and increments totCnt.
Split-phase serialization gives Coati flexibility on power

failure. Coati has a configuration option that aborts event bot-
toms for programs in which an event’s bottom must execute
in the same operating period as its top. However, Coati can
avoid unnecessarily discarding events by repeatedly execut-
ing an event bottom if power fails during the event bottom.
Because the part of the interrupt that must be timely is likely
to occur in the top of the event handler, the bottom should be
able to execute safely even with the delay of a power failure.

If multiple split-phase events occur during a single task’s
execution, Coati allows their event bottoms to queue and
wait for the task to complete. When a task completes, it
commits as usual and processes the event queue, executing
queued event bottoms in order.

4.2 Multi-Task Transactional Execution
Coati allows the programmer to sequence multiple tasks to-
gether into a transaction. A transaction is atomic with respect
to interrupting events in the sameway that an individual task
is atomic with respect to an interrupting event. A transac-
tion is not atomic with respect to power interruptions, but its
constituent tasks individually are. Applications need multi-
task transactions because some operations that should be
atomic with respect to interrupting events may individually
consume more energy than the intermittently operating de-
vice can buffer. If tasks were the only unit of atomicity with
respect to events, then a program using such energy-hungry
tasks would have to decide: to split the operations across

1091

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Emily Ruppel and Brandon Lucia

tasks, allowing an interrupting event to violate atomicity, or
to include both operations in the same task, preventing the
task from completing because it consumes more energy than
the device can supply. Multi-task transactions allow tasks
to execute sequentially without interruption by an event,
eventually committing updates from all tasks.
Coati Transactions. Coati supports split-phase serializa-
tion for transactions as shown in Figure 8. The figure shows
the case where multiple events interrupt during the transac-
tion’s execution, each executing its top half and enqueueing
its bottom half to execute after the transaction completes.
Each pair of event top and bottom shares its own private
buffer (distinguished in the figure using ’ vs. "). The opera-
tion of split-phase serialization with transactions is identical
to the task case, except Coati does not execute event bottoms
until after the entire transaction completes, as opposed to
awaiting only the interrupted task. The simple implementa-
tion of transactions in the split-phase model avoid several
key drawbacks of the buffered implementation that is dis-
cussed in Section 6.2.

Tr
an

sa
ct

io
n

Task: WindowStats

B1:Add﴾Win[],
 n',x',y',z')
B2:totCnt += n'

B1:Add﴾Win[],
 n",x",y",z")
B2:totCnt += n"

Interru
pt!

1:num = countValid(Win[])
2:if(num<Min)Coati_TXEND
3:(Mx,My,Mz) = Mean3D(Win[])
4:(SDx,SDy,SDz)=StDv3D(Win[])
5:TransTo(t_FeaturizeWin)

Task: FeaturizeWin
6:winMag = Mag3D﴾Win[]﴿
7:featVec = [winMag,
8: SDx,SDy,SDz,
9: Mx,My,Mz]
10:TransTo(t_ClassifyFeatVec)

Coati_TXBEGIN

Task: Classify

SensorEvent, Top

Interrupt! SensorEvent, Top

Coati_TXEND

Q
ue

ue
d

Ev
en

t
B

ot
to

m
s

T1:﴾x',y',z'﴿=
 datarecv()
T2:n'=numrecv﴾﴿

T1:﴾x",y",z"﴿=
 datarecv()
T2:n"=numrecv﴾﴿

Event tops use private buffers
(denoted with ' and ")

Later event bottoms see earlier event
bottoms' effects (e.g.,totCnt)

Resume

Resume

Figure 8. A transaction using split-phase serialization.
Each time a sensor event occurs, the top half captures data
and enqueues a bottom half to execute after the transaction.

5 Implementation Details
Coati’s implementation is a runtimewith an API (Table 1) for
control flow, persistent state access, and synchronization of
events and tasks.We assume hardware with byte-addressable
non-volatile memory and atomic word writes.

5.1 Control Flow
Coati maintains a program context that defines the current
control state of the program, allowing the system to progress

through tasks, enter and exit transactions, and execute and
return from events. Tasks are C functions with no return
value and no arguments. Programmers use the next_task
or tx_next_task statements to transition between tasks,
respectively, both outside and inside of a transaction. To en-
sure task transitions are robust to power failures, the runtime
system explicitly maintains a task context object, stored in
persistent memory. The task context object holds the address
of the start of the current task and the current task’s com-
mit state bit, which indicates whether the task is currently
committing. The task context object also holds the context
of an ongoing transaction containing the current task and
the state of any queued event bottoms that are waiting to
execute. Task transition statements update the task context
atomically by double buffering the context and swapping
the value of the runtime’s global current_context pointer,
which points to the active context. To start a transaction,
the programmer inserts the tx_begin keyword at the start
of the first task in a transaction. tx_begin sets the current
context’s transaction state to active. To commit a transaction,
the programmer uses a tx_next statement, which atomically
commits the updates from the last task in the transaction
and redirects control to a specified task.
Coati Event Implementation. Coati’s implementation re-
lies on the existing ISR control mechanism and does not
require explicitly tracking control transfer between the inter-
rupted task and an event’s top half. Instead, the programmer
writes the event’s top half directly in the ISR. At the start
of the event’s top half code, the programmer must include
Coati’s th_start primitive. th_start ensures that there are
resources available to buffer the event’s bottom half, aborting
the interrupt if there are not. The programmer uses Coati’s
th_return to register an event’s bottom half. In contrast
to the top half, an event bottom half is a C function with
no return value and no arguments and is associated with
an event context object. th_return takes a pointer to an
event context object as an argument and adds that pointer
to Coati’s event queue, which tracks queued bottom halves
in order. After an interrupted task or transaction completes,
it checks the event queue. If the queue contains any event
bottom halves, control transfers to each of them in FIFO
order before moving on to the next task.

5.2 Memory Access
Coati provides atomic updates by buffering all updates to
persistent memory in nonvolatile buffers. Each buffer is a
statically pre-allocated list of writes to memory (without
duplicates). Each entry contains the address, size, and new
value for each update. Coati maintains one buffer that is
reused for tasks, tasks in transactions, and events because
split-phase serialization does not allow an event bottom to
run until after the ongoing task or transaction has committed.
As we describe below, an update by an event or task of a non-
volatile memory location (to a “task-shared” variable [55])

1092

Transactional Concurrency Control for Intermittent... PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Table 1. A summary of the Coati API. t is a task, ev is an
event bottom, x a variable, val a value, and type a C type.

Control Flow Data Access Synchronization
next_task(t) read(x,type) tx_begin()
th_start() write(x,val,type) tx_next(t)

th_return(ev) th_write(x,val)
bh_read(x)

is stored in its respective buffer until commit. Buffers are
statically allocated (which is common in embedded systems)
and it is an error to access more data in a task, event, or
transaction than any buffer can hold.
Writes. To write memory, the programmer uses the write
primitive. A task or event write performs a linear search in
the private buffer for an entry for the variable being written.
If the variable’s address is not in the buffer, Coati attempts
to allocate space in the buffer. Exceeding buffer capacity is a
programming error and the programmer should specify that
Coati should use larger buffers and re-compile. After allo-
cating space in the buffer, Coati writes the update’s address,
size, and value to the buffer.
Reads. To read memory, the programmer uses the read
primitive. The runtime first linearly searches the private
buffer for an updated version of the variable. If the search
succeeds, the read returns a reference to the buffered value.
If the search fails, then the read returns a reference to the
value stored in main memory.
Split-Phase Accesses. In Coati’s split-phase serialization
model, events are split into top halves and bottom halves
(Section 4.1). The top half of an event can share data with
the bottom half of an event through fields in a Coati event
context object that the programmer specifies using evt_var.
Each field is automatically, statically replicated by Coati a
number of times equal to the maximum number of enqueued
event bottoms. The top half can store to one of these shared
fields using th_write. The bottom half can load from one of
these shared fields using bh_read. When an event bottom
accesses a field shared with its event top, Coati automatically
maps the field to the correct replica based on the event bot-
tom’s position in the event queue. All field data are statically
allocated and the memory overhead of queue and fields is
programmer-configurable; we used a queue of 16.

5.3 Commit
Coati uses two-phase commit to atomically commit buffered
updates. Commit begins when execution traverses a pro-
grammer inserted next_task or event_return statement,
which ends a task or event respectively. Ending a task or
event sets its commit state bit and prepares the task context
object for the next task that will execute. The runtime points
the current_context pointer at this new context and begins
writing the buffered updates from the just-completed task

or event-bottom to memory. During commit, the runtime
uses a non-volatile counter to track the number of buffer
entries remaining to commit, decrementing the counter only
after the write is complete to ensure that all entries correctly
commit, despite power failures.

6 Buffi: A Buffering-Based Alternative
To explore the design space of systems supporting inter-
mittent execution and transactional concurrency, we devel-
oped an alternative implementation called Buffi. Coati uses
split-phase serialization to order events with tasks and trans-
actions, Buffi, in contrast, uses buffered serialization. Buffi
buffers all event, task, and transaction state to serialize con-
current updates to shared memory. Buffered serialization
necessitates several design and implementation changes.

6.1 Buffering and Serialization
Buffi tasks and events buffer all shared memory updates.
As a result, each event may be written as a single block of
code that executes immediately after its associated interrupt
fires. Events may perform timely operations and manipulate
task-shared variables. In Figure 9, the event reads new data
from the sensor and updates Win[] and totCnt immediately
after it is triggered by the interrupt. The event commits the
updates when it completes. After an event commits its up-
dates to memory, control resumes from the beginning of the
interrupted task and execution continues; in the figure, the
event completes and WindowStats restarts from the begin-
ning. If power fails during a Buffi event, Buffi discards its
updates and does not attempt to re-execute it.

Task: WindowStats
1:num = countValid(Win[])
2:if(num<MIN)TransTo(t_init)
3:(Mx,My,Mz) = Mean3D(Win[])
4:(SDx,SDy,SDz)=StDv3D(Win[])
5:TransTo(t_FeaturizeWin)

Restart interrupted task

Interru
pt! SensorEvent
I1:﴾x,y,z﴿=
 datarecv()
I2:n=numrecv﴾﴿
I3:Add(Win[],n,
 x,y,z)
I4:totCnt += n

Commit updates to
Win[] and totCnt

6:winMag = Mag3D﴾Win[]﴿
7:featVec = [winMag,
8: SDx,SDy,SDz,
9: Mx,My,Mz]
10:TransTo(t_ClassifyFeatVec)

Task: FeaturizeWin

Figure 9. Task & buffered event interaction. Buffered se-
rialization forces tasks to restart after an event. If the event in-
terrupts a transaction, only the interrupted taskmust restart.

6.2 Buffi Transactions
To support buffered-serialization for transactions, Buffi in-
troduces a transaction buffer. Buffi tasks in a transaction
consecutively commit their updates to a transaction-private
commit buffer that is distinct from main memory. On comple-
tion, the transaction commits this transaction commit buffer
to main memory, making the transaction’s tasks’ updates

1093

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Emily Ruppel and Brandon Lucia

visible to subsequent tasks and events. Buffi events may pre-
empt transactions, but only the interrupted task must be
restarted. Completed tasks in the transaction do not need to
be rerun. However, events’ updates must serialize after the
entire preempted transaction. To preserve the atomicity of
the transaction, an event that preempts a transaction com-
mits its updates to a private commit buffer on completion,
rather than committing directly to memory.

Before committing buffered event updates, Buffi performs
conflict checking, which ensures that the event did not read
data that the transaction wrote. If an event that executed dur-
ing the transaction read from a memory location that a task
in the committing transaction wrote, the event would not
see the value updated by the transaction because the update
would be buffered. Reading this stale value is inconsistent
with the event’s serialization after the task, so Buffi discards
the events’ buffered updates.

6.3 Buffi Implementation
Buffi’s implementation is similar to Coati’s, but is generally
more complex. The major differences arise from maintaining
additional state to allow for concurrent access to task-shared
variables by events and transactions.
BuffiEvents. Buffi statically allocates an event context object
for each programmer-defined event function. The event con-
text object holds a pointer to the start of the event and its com-
mit state. To trigger an event in response to an interrupt, the
programmer inserts an event_handler call in the ISR after
any device-specific code required to clear the interrupt that
was triggered. event_handler sets Buffi’s return_context
pointer to point to the interrupted task’s context, and transi-
tions to the event by setting the current_context pointer
to point to the triggered event’s context. The programmer
places an event_return statement at the end of the event,
which returns control to the stored return_context.
Buffi Memory Accesses. Buffi maintains three statically
allocated buffers: the task buffer, the event buffer and the
transaction buffer to ensure isolation between concurrent
updates to task-shared variables. In Buffi, a task in a transac-
tion writes its buffered updates into the transaction’s buffer
when the task commits. While a transaction executes, a sin-
gle event buffer persists across events, allowing events to
see updates written by previous events. In tasks and events
outside an active transaction, Buffi accesses task-shared vari-
ables the same way as Coati (as described in Section 5.2). If a
read occurs in a task within a transaction, the runtime first
searches through the task’s buffer, then the transaction’s
buffer, before reading the value from main memory. In Coati,
there is no transaction buffer; the read immediately returns
the value from memory. Buffi also tracks the set of writes
performed by a transaction and the set of reads performed
by events for use in conflict detection. A write in a Buffi
transaction updates its write set, adding the address of the
written location. A read in a Buffi event first checks if there

is an active transaction, and then updates the event’s read
set. Recall that Coati need not track write or read sets.
Buffi Commit. For tasks and events that occur when no
transaction is active, commit follows the procedure described
in Section 5.3. To commit a transaction, the transaction must
first commit updates made by the last task in the transac-
tion to its transaction buffer. Next, Buffi compares the set
of addresses that are updated in the transaction buffer to
the set of addresses that were read by any event. If the two
sets of addresses overlap, Buffi detects a conflict and discards
the event buffer. Next, Buffi writes the updated values in the
transaction buffer back to memory. Last, if there was no con-
flict between an event and the transaction, Buffi commits the
event buffer, and continues to the next task after the trans-
action. Recall that Coati simply commits the updates from
the last task in the transaction, and then unconditionally
processes the event queue.

6.4 Buffer Design
To study the effect of buffer design on Buffi’s memory access
latency, we implemented the transaction buffer both as a
linear buffer and alternatively as a fixed size, chaining hash
tables. The hash table design results in speedup when the
transaction commit list is long because linear search in a long
list is slower than hash lookup. Table 2 shows the average
and maximum number of entries committed at the end of
each task and transaction in several benchmark applications
(described in Section 7). The data show that a simple, linear
buffer often works well because the average number of en-
tries committed at the end of a task tends to be small. The
data also show that a hash table is the best option for RSA
and CF (full evaluation details are in Section 7).

Table 2. Commit Statistics. The average and maximum
number of entries committed at the end of each task and
transaction in benchmark applications.

App BC AR RSA CEM CF BF
Task Avg 3 2.4 4.8 9.4 1.6 –
Task Max 3 6 18 194 135 –
Tx Avg 4.3 6.2 97.7 29.4 147 –
Tx Max 5 10 98 32 149 –

7 Evaluation
We evaluated Coati using applications from prior work on
a real energy-harvesting device and directly compared to
a state-of-the-art intermittent computing system. Since no
prior systems correctly support concurrent interrupts in an
intermittent execution, we compare Coati’s split-phase trans-
actions to three additional concurrency control strategies.
Our evaluation shows that Coati avoids failures permitted by
existing systems and does so with low runtime overhead and

1094

Transactional Concurrency Control for Intermittent... PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

reduced programming effort, permitting responsive event-
driven applications.

7.1 Benchmarks and Methodology
We evaluated Coati using the Capybara hardware
platform [15]. We used a collection of full applications from
prior work [55], modified to use event-driven I/O. The
applications collect input, process data and communicate
results. To make experiments repeatable, we emulate
peripherals with logged data. Like TinyOS [48], we assume
that events are short and that they are triggered relatively
infrequently. To emulate event arrival, we trigger events via
a GPIO pin driven by a continuously powered Arduino [4]
for 20ms pulses with an interarrival time drawn from a
Poisson distribution with λ = 100ms [79]. We use the same
event arrival emulation parameters for all benchmarks. We
measured runtime using a logic analyzer to capture GPIO
pulses at the start and end of each run. We use an attenuated
bench supply as a harvested-energy source providing under
10mA, like prior work [15].

We evaluate six configurations: Ideal (which does not com-
plete on harvested energy), Alpaca (which breaks with inter-
rupts on harvested energy), Coati, Buffi, and two additional
comparisons Atomic, and Hand-Op. We compare against
Alpaca because, at the time of writing, it is the fastest task-
based intermittent computing model that supports arbitrary
computation. Alpaca avoids the channel management over-
head of Chain [13], and allows loops in the task graph unlike
Mayfly [31]. To provide idempotent task re-execution in the
case of power failures, Alpaca buffers only the task-shared
variables involved in write-after-read dependences. At the
end of each task, Alpaca commits the buffered variables to
memory. Ideal runs the same application code as Alpaca,
but the runtime has been modified to remove all buffering
and commit code. Ideal fails on harvested energy, but on
continuous power it represents a task-based system with
the minimum possible overhead. Atomic and Hand-Op use
fully buffered tasks, like Buffi, but neither uses transactions.
Atomicmasks interrupts during critical regions, representing
a naive solution to multi-task atomicity. Hand-Op uses hand-
optimized code to synchronize tasks and events, demonstrat-
ing the programming effort required without Coati.
We modified the applications to use the Coati API to

handle events, preserving their task decomposition [55].
BC: Bitcount (BC) counts bits set in an array using various al-
gorithms. Its event changes an array index and a transaction
ensures each algorithm sees a consistent array. Execution
is correct if each algorithm reports the same count. AR: Ac-
tivity Recognition (AR) is a simple machine learning model
that classifies data from a three axis accelerometer as mov-
ing or stationary. We emulate an accelerometer with our
interrupt providing random data. A transaction ensures that
the sample window and count remain consistent. RSA: RSA
Encryption (RSA) uses a fixed, 64-bit key to encrypt a string

updated by an event. A transaction prevents string updates
during encryption. BF: Blowfish (BF) uses a block cipher to
encrypt a string updated by an event, using transactions to
prevent updates during encryption. We omit BF for Buffi
because the device runs out of memory. CEM: Cold-chain
Equipment Monitoring (CEM) LZW compresses a stream of
temperature data generated by an event. The code synchro-
nizes a double buffered sample buffer and ready flag indi-
cating data are available. CF: Cuckoo Filtering (CF) stores
and queries for values in cuckoo filter. Events insert data,
while tasks insert and query the filter. A transaction prevents
concurrent, conflicting updates from being lost.

7.2 Correctness
We demonstrate that prior task-based intermittent systems
do not correctly support interrupts. For each benchmark, we
attempted to add synchronization manually to the Alpaca
implementation to support interrupts that concurrently mod-
ify task-shared state. We used a combination of careful flag
synchronization and short atomic (i.e., interrupts disabled)
blocks. Alpaca tasks behaved as normal but we prevented
Alpaca from privatizing data in ISR code because allowing
it causes Alpaca’s atomic commit to fail. The ISR directly
updates memory.

Table 3 shows that Alpaca fails for all benchmarks except
BC. Columns 6–8 show min/mean/max time to failure. The
time to failure varies because failure is dependent on specific
experimental event timings and harvested-energy recharge
time. We investigated each failure and verified its root cause

Table 3. Correctness. Coati prevents incorrect behavior
during intermittent execution. Using Alpaca alone, most
applications crash or hang. ✓indicates correct execution, ✗is
incorrect. Mean time to failure (MTTF) varies with event
timing, and application behavior, not measurement error.

Intermittent Exec. Correct? Alpaca MTTF (s)
App. Atm. H-Op Bff. Coati Alpaca Min Mean Max
BC ✓ ✓ ✓ ✓ ✓ n/a n/a n/a
AR ✓ ✓ ✓ ✓ ✗ 0.02 1.5 3.5
RSA ✓ ✓ ✓ ✓ ✗ 4.6 26.9 45.4
CEM ✓ ✓ ✓ ✓ ✗ 0.6 0.7 1.4
CF ✓ ✓ ✓ ✓ ✗ 1.8 18.1 68.8
BF ✓ ✓ – ✓ ✗ 2.8 3.8 5.0

was the interaction of intermittent operation and interrupts.
The “False Flag” problem was most common: privatization
hides updates to synchronization bits set in the ISR or a task.
Consequently, AR, RSA, CEM and BF all overwrite updates
made by the event. The error causes CEM to stall indefinitely
and the lost update causes visible corruption of AR’s output.
In CF, privatization breaks synchronization, leaving event
counting statistics inconsistent. BC does not fail even using
Alpaca because the program is simple, the event is very short,
and the event timing does not lead to a failure.

1095

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Emily Ruppel and Brandon Lucia

7.3 Programming Effort
We compared the programming effort required to correctly
synchronize the benchmarks with Coati and by hand (Hand-
Op). We found that transactions in Coati simplify reasoning
about correct synchronization in an intermittent execution.
Table 4 quantifies the additional code required to manage
synchronization for each benchmark with Coati (C) and
by hand (H). We counted the number of variables, tasks
and task transitions that had to be added or modified. In
Coati, the lines of code were primarily used to start and end
transactions. No more than 4 new lines of code had to be
added to correctly split the event into a top and bottom. Hand-
Op requires additional tasks and carefully written transitions
to avoid the “False Flag“ problem described in Section 3. CEM
and BF nominally required only a few more lines of code to
manage double buffers of data by hand, but the accesses to
the new variables had to be carefully placed.

Table 4. Programming Effort. Coati (C) reduces the effort
to write correctly synchronized code. Synchronizing the code
by hand(H) required up to 10x more lines of code to manage
extra variables, tasks and transitions.

App: BC AR RSA CEM CF BF
Config: C H C H C H C H C H C H
lines 15 65 7 70 8 40 21 24 4 32 5 12
variables 0 3 0 3 1 3 2 3 0 1 1 1
transitions 7 14 3 9 2 0 1 1 1 3 0 0
tasks 0 2 0 4 0 0 0 0 0 2 0 0

7.4 Events Captured
We evaluated Coati’s ability to effectively capture events in
an intermittent execution. Coati avoids losing events due to
a power failure while synchronization or a disabled interrupt
blocks an event.

BC AR RSA CEM CF BF
0

20

40

60

80

100

Ev
en

ts
 P

ro
ce

ss
ed

 (%
)

In
su

ffi
ci

en
t M

em
or

y

Atomic Hand-Op Buffi Coati

Figure 10. Events Captured. Under harvested energy,
Coati consistently processed 100% of the events that occurred
while the device was powered on.

Figure 10 shows the fraction of events that are processed
(executed and committed to memory) compared to the total
number observed while the device is intermittently powered-
on. The key observation is Coati does not disable interrupts
and allows the application to process all events that arrive.

Buffi discards updates from events that conflict with trans-
actions, so benchmarks with long transactions such as CF
and RSA process fewer events. Disabling interrupts (Atomic),
causes the application to lose events without running the ISR
code. The effect is exacerbated under intermittent execution
because pending interrupt signals stored in volatile memory
are cleared on reboot. Hand-Op processes a high fraction of
events in all benchmarks except BC. Hand-Op uses a try-lock
mechanism in BC to prevent the event from writing to the
shared index during a critical region, and the event is rarely
able to acquire the lock.

7.5 Performance
We evaluated Coati’s performance on harvested energy and
continuous power showing that it has practical overheads
compared to an ideal system. On continuous power, Coati
is competitive with an “Ideal” Alpaca system that avoids all
buffering and commit overheads, but does not run correctly
on harvested energy. On harvested energy, our experiments
show that all Coati configurations have similar performance.

BC AR RSA CEM CF BF
0

5

10

15

20
R

un
tim

e(
s)

In
su

ffi
ci

en
t M

em
or

y

(Fails on harvested energy)
Atomic
Ideal

Hand-Op Buffi Coati

Figure 11. Runtime on continuous power. For applica-
tions that are bound by event arrival frequency, Coati per-
forms as well as the ideal baseline.

Figure 11 shows the runtime on continuous power for
each application and configuration and Figure 12 shows the
percentage of the runtime spent in different parts of the
computation. The data show that progress in AR and CEM
are bound by the frequency of events arriving, not by the
performance of computing. As a result, Coati performs as
well as the ideal case. BF and RSA perform more memory
accesses per event, and Coati’s overheads slow it relative to
the idealized baseline.
BC computes continuously, regardless of the arrival rate

of interrupts and Coati’s overhead on accesses to shared
memory degrades its performance relative to the idealized
baseline. Buffi’s complicated commit protocol for tasks in
transactions contributes to a 2.5x slowdown of Buffi over
Coati for RSA.

Figure 13 shows the end to end runtime for each of the ap-
plications while the device is powered by harvested energy.
The runtimes include the time to recharge and to reinitialize
the device on each reboot, which account for approximately
85% of the total runtime (the device is operational for about

1096

Transactional Concurrency Control for Intermittent... PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

BC AR RSA CEM CF BF

0

20

40

60

80

100

R
un

tim
e

(%
)

In
su

ffi
ci

en
t M

em
or

y

 A
to

m
ic

H
an

dO
p

B
uf

fi
 C

oa
ti

 Id
ea

l

 A
to

m
ic

H
an

dO
p

B
uf

fi
 C

oa
ti

 Id
ea

l

 A
to

m
ic

H
an

dO
p

B
uf

fi
 C

oa
ti

 Id
ea

l

 A
to

m
ic

H
an

dO
p

B
uf

fi
 C

oa
ti

 Id
ea

l

 A
to

m
ic

H
an

dO
p

B
uf

fi
 C

oa
ti

 Id
ea

l

 A
to

m
ic

H
an

dO
p

B
uf

fi
 C

oa
ti

 Id
ea

l

Task Work outside Tx
Task Work in Tx
Tx Completion

Task Trans. in Tx
Task Trans. outside Tx

Event Trans.
Events

Figure 12. Breakdown of runtime usage. The runtime
usage varies across the benchmark applications. The inter-
mittent failure-safe systems all incur additional buffering
and commit overhead compared to the ideal baseline.

85ms before spending about 900ms recharging). The Ideal
and Alpaca runtimes are omitted because all of the applica-
tions failed to complete correctly. The fastest configuration
varies because the overhead incurred by each of the configu-
rations is determined by specific application characteristics.
Overall Coati provides performance that is better or within
a standard deviation of Hand-Op on all benchmarks without
incurring the additional programming overhead of Hand-Op
or losing events like Atomic.

BC AR RSA CEM CF BF
0

50

100

150

200

250

R
un

tim
e(

s)

In
su

ffi
ci

en
t M

em
or

y

Atomic Hand-Op Buffi Coati

Figure 13. Runtime on harvested energy. Coati’s perfor-
mance is comparable to Hand-Op’s without the additional
programming overhead.

8 Related Work
There are several areas of work related to Coati. Intermit-
tent computing is most relevant. Coati relates to work defin-
ing synchronization in embedded systems and research on
non-volatile memory systems. Transactional memory shares
some mechanisms with Coati.
IntermittentComputing. Intermittent computing is a field
that emerged at the intersection of energy-harvesting [39, 62,
63, 83, 85] and computer systems [37, 74], including compu-
tational RFID [17, 51, 64, 72, 78]. Hardware emerged enabling
researchers to use energy-harvesting computers [1, 15, 29,
34, 72, 75, 88]. Leveraging these, prior work developed soft-
ware that operates intermittently [6, 7, 10, 35, 58, 69]. Pro-
gramming and execution models [13, 31, 33, 52, 54, 55, 82]

emerged that enable correct operation with non-volatile
memory. These efforts identified and solved key problems of
memory consistency using privatization analysis that buffers
and commits only data involved in WAR dependences. A
contribution of this paper is to show that the underlying
assumptions of privatization are violated by interrupts.

Mayfly [31] studied I/O in an intermittent context, but un-
like Coati focused on the timeliness of I/O processing; Mayfly
is thus complementary to Coati. InK [86] is a reactive kernel
that supports event-driven data processing and scheduling
on batteryless devices. InK, like Coati, allows programmers
to write intermittent applications that rely on interrupts.
However, InK presents a rigid memory model that restricts
the scope of shared variables to within "task threads", series
of tasks scheduled by an event. Pairs of task threads may
only communicate using unidirectional "pipes". In contrast,
Coati supports arbitrary access to shared memory. InK’s task
threads can be preempted at a task granularity, so multi-task
atomic regions have to be designed implicitly by carefully
placing pipe writes. Coati allows the programmer to explic-
itly define transactions composed of multiple tasks. Finally,
InK’s dynamic scheduler complicates reasoning about when
tasks execute, while Coati gives control to the programmer.
Concurrency in Embedded Systems. There is a long
history of concurrency control research [18, 42, 43]. Prior
work [77] provides a survey. The most related efforts on
synchronization for embedded systems are TinyOS [47, 48]
and nesC [21]. These are frequently-used and provide
atomic statements to serialize synchronous tasks and
asynchronous events. Other work follows suit [20, 46, 49].
Non-VolatileMemory. The emergence of byte-addressable,
non-volatile memory has led to the development of strategies
for improving the performance of fault-tolerant, persistent
data structures. Persistency models define allowable reorder-
ings of persists to non-volatile memory [23, 41, 65, 66]. Hard-
ware [36, 41, 61, 89] and software [2, 11, 40, 84] support
for multi-threaded application programming with persis-
tent memory have been explored. Like these prior works,
Coati provides crash consistency for concurrent updates to
persistent memory. However, prior work targets large scale
systems while Coati ensures data consistency and forward
progress under extreme resource constraints.
Transactional Memory. Coati’s synchronization model —
especially its multi-task transactions — takes a direct cue
from a long history of work in transactional memory sys-
tems. Transactional memory systems started as mechanisms
for manipulating small multi-byte data structures atomi-
cally [26, 27, 73], but have grown into a broad research area
with support in hardware [28, 59, 71], support for unbounded
transactions [3, 8], and support for exotic serialization mod-
els [9, 70, 76]. While similar in principle to Coati, the purpose
of most prior work on transactions was to synchronize sys-
tems that use multiple concurrent threads to perform parallel
computations. Between Coati and these prior efforts there

1097

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Emily Ruppel and Brandon Lucia

are many common ideas: update buffering and commit, con-
flict detection, atomicity, serialization, and speculation and
rollback. Coati draws inspiration from work on transactions,
recruiting mechanisms to the specific purpose of synchroniz-
ing event-driven interrupts with task-based intermittently
executing programs on tiny, energy-harvesting devices.

9 Conclusion
This work is the first to study interrupt-driven concurrency
in intermittent systems, showing that a naive attempt to
combine the two will cause programs to misbehave. Coati
is the first system to correctly support interrupt-driven con-
currency in an intermittent system, providing a familiar
interface with synchronous computational tasks and asyn-
chronous interrupt-driven events, all robust to intermittent
operation. Coati provides transactions allowing sequences
of tasks to be atomic with respect to events, and provides
two different serialization mechanisms for events, tasks, and
transactions. An evaluation comparing to a state-of-the-art
task-based intermittent system showed that Coati safely en-
ables interrupts in applications that otherwise catastrophi-
cally fail in seconds. Coati has practical overheads, compara-
ble to an idealized baseline system.

Acknowledgments
We thank the anonymous reviewers for the valuable feedback
and we thank June Andronick for shepherding our work. We
thank members of the Abstract research group at CMU for
insightful early discussion on these ideas. This work was
supported in part by National Science Foundation Award
#1751029. This work was supported in part by the CONIX
Research Center, one of six centers in JUMP, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA.

References
[1] Joshua Adkins, Bradford Campbell, Branden Ghena, Neal Jackson,

Pat Pannuto, and Prabal Dutta. 2016. The Signpost Network: Demo
Abstract. In 14th ACM Conference on Embedded Network Sensor Systems
(SenSys ’16). ACM, New York, NY, USA, 320–321.

[2] Mohammad Alshboul, James Tuck, and Yan Solihin. 2018. Lazy Per-
sistency: a High-Performing and Write-Efficient Software Persistency
Technique. In 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA). IEEE.

[3] C Scott Ananian, Krste Asanovic, Bradley C Kuszmaul, Charles E
Leiserson, and Sean Lie. 2005. Unbounded transactional memory. In
High-Performance Computer Architecture, 2005. IEEE.

[4] Arduino. 2018. Arduino Uno Rev3. https://store.arduino.cc/usa/
arduino-uno-rev3. Accessed: 2018-05-03.

[5] Sara S. Baghsorkhi and Christos Margiolas. 2018. Automating Efficient
Variable-Grained Resiliency for Low-Power IoT Systems. In Proc. CGO.
ACM, Vienna, Austria.

[6] Domenico Balsamo, Alex S Weddell, Anup Das, Alberto Rodriguez
Arreola, Davide Brunelli, Bashir M Al-Hashimi, Geoff V Merrett, and
Luca Benini. 2016. Hibernus++: a self-calibrating and adaptive sys-
tem for transiently-powered embedded devices. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 35, 12 (2016),
1968–1980.

[7] Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-
Hashimi, Davide Brunelli, and Luca Benini. 2015. Hibernus: Sustaining
computation during intermittent supply for energy-harvesting sys-
tems. IEEE Embedded Systems Letters 7, 1 (2015), 15–18.

[8] Colin Blundell, Joe Devietti, E. Christopher Lewis, and Milo M. K.
Martin. 2007. Making the Fast Case Common and the Uncommon
Case Simple in Unbounded Transactional Memory. SIGARCH Comput.
Archit. News 35, 2 (June 2007), 24–34.

[9] Colin Blundell, Arun Raghavan, and Milo MK Martin. 2010. RET-
CON: transactional repair without replay. In ACM SIGARCH Computer
Architecture News, Vol. 38. ACM, 258–269.

[10] Michael Buettner, Ben Greenstein, and David Wetherall. 2011. Dew-
drop: an energy-aware runtime for computational RFID. In Proc.
USENIX NSDI. 197–210.

[11] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Ra-
jesh K Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:
making persistent objects fast and safe with next-generation, non-
volatile memories. ACM Sigplan Notices 46, 3 (2011), 105–118.

[12] Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P Sample.
2016. An energy-interference-free hardware-software debugger for
intermittent energy-harvesting systems. ACM SIGPLAN Notices 51, 4
(2016), 577–589.

[13] Alexei Colin and Brandon Lucia. 2016. Chain: tasks and channels
for reliable intermittent programs. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. ACM, 514–530.

[14] Alexei Colin and Brandon Lucia. 2018. Termination Checking and
Task Decomposition for Task-based Intermittent Programs. In 27th
International Conference on Compiler Construction (CC 2018). 116–127.

[15] Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A Reconfig-
urable Energy Storage Architecture for Energy-harvesting Devices.
In Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS ’18). ACM, New York, NY, USA, 767–781.

[16] Canan Dagdeviren, Byung Duk Yang, Yewang Su, Phat L Tran, Pauline
Joe, Eric Anderson, Jing Xia, Vijay Doraiswamy, Behrooz Dehdashti,
Xue Feng, et al. 2014. Conformal piezoelectric energy harvesting and
storage from motions of the heart, lung, and diaphragm. Proceedings
of the National Academy of Sciences 111, 5 (2014), 1927–1932.

[17] Artem Dementyev, Jeremy Gummeson, Derek Thrasher, Aaron Parks,
Deepak Ganesan, Joshua R. Smith, and Alanson P. Sample. 2013. Wire-
lessly Powered Bistable Display Tags. In Proceedings of the 2013 ACM
International Joint Conference on Pervasive and Ubiquitous Computing
(UbiComp ’13). ACM, New York, NY, USA, 383–386.

[18] Edsger W Dijkstra. 1968. Cooperating sequential processes. In The
origin of concurrent programming. Springer, 65–138.

[19] Adwait Dongare, Anh Luong, Artur Balanuta, CraigHesling, Khushboo
Bhatia, Bob Iannucci, Swarun Kumar, and Anthony Rowe. 2018. The
Openchirp Low-power Wide-area Network and Ecosystem: Demo
Abstract. In 17th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN ’18). 138–139.

[20] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. 2004. Contiki—
a Lightweight and Flexible Operating System for Tiny Networked
Sensors. In Proc. First IEEE Workshop on Embedded Networked Sensors.

[21] David Gay, Philip Levis, Robert Von Behren, Matt Welsh, Eric Brewer,
and David Culler. 2014. The nesC language: A holistic approach to
networked embedded systems. Acm Sigplan Notices 49, 4 (2014), 41–51.

[22] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. 2019. Intelli-
gence Beyond the Edge: Inference on Intermittent Embedded Systems.
In Proceedings of the International Symposium on Architecture Support
for Programming Languages and Operating Systems.

[23] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish
Narayanasamy, Peter M. Chen, and Thomas F. Wenisch. 2018. Per-
sistency for Synchronization-free Regions. In Proceedings of the 39th

1098

https://store.arduino.cc/usa/arduino-uno-rev3
https://store.arduino.cc/usa/arduino-uno-rev3

Transactional Concurrency Control for Intermittent... PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI 2018). ACM, New York, NY, USA, 46–61.

[24] Jim Gray and Andreas Reuter. 1992. Transaction processing: concepts
and techniques. Elsevier.

[25] Gerald Halpert, Harvey Frank, and Subbarao Surampudi. 1999. Batter-
ies and fuel cells in space. (1999).

[26] Tim Harris and Keir Fraser. 2003. Language support for lightweight
transactions. In ACM Sigplan Notices, Vol. 38. ACM, 388–402.

[27] Maurice Herlihy, Victor Luchangco, and Mark Moir. 2006. A flexible
framework for implementing software transactional memory. In ACM
Sigplan Notices, Vol. 41. ACM, 253–262.

[28] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional Memory:
Architectural Support for Lock-free Data Structures. SIGARCHComput.
Archit. News 21, 2 (May 1993), 289–300.

[29] Josiah Hester, Sarah Lord, RyanHalter, David Kotz, Jacob Sorber, Travis
Peters, Tianlong Yun, Ronald Peterson, Joseph Skinner, Bhargav Golla,
Kevin Storer, Steven Hearndon, and Kevin Freeman. 2016. Amulet: An
Energy-Efficient, Multi-Application Wearable Platform. ACM Press.

[30] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. 2015. Tragedy
of the Coulombs: Federating energy storage for tiny, intermittently-
powered sensors. In 13th ACM Conference on Embedded Networked
Sensor Systems. ACM.

[31] Josiah Hester, Kevin Storer, and Jacob Sorber. 2017. Timely Execution
on Intermittently Powered Batteryless Sensors. In Proceedings of the
15th ACM Conference on Embedded Network Sensor Systems. ACM.

[32] Robin Heydon. 2013. Bluetooth low energy: the developer’s handbook.
Vol. 1. Prentice Hall Upper Saddle River.

[33] Matthew Hicks. 2017. Clank: Architectural Support for Intermittent
Computation. ACM Press, 228–240.

[34] Vikram Iyer, Justin Chan, and Shyamnath Gollakota. 2017. 3D Printing
Wireless Connected Objects. ACM Transactions on Graphics (TOG).

[35] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. 2014.
QuickRecall: A low overhead HW/SW approach for enabling compu-
tations across power cycles in transiently powered computers. In VLSI
Design and 2014 13th International Conference on Embedded Systems,
2014 27th International Conference on. IEEE, 330–335.

[36] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2018.
DHTM: Durable Hardware Transactional Memory. In Proceedings of
the International Symposium on Computer Architecture.

[37] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shi-
uan Peh, and Daniel Rubenstein. 2002. Energy-efficient computing
for wildlife tracking: Design tradeoffs and early experiences with Ze-
braNet. In ACM Sigplan Notices, Vol. 37. ACM, 96–107.

[38] Mehdi Kalantari. 2012. Low Cost Structural Health
Monitoring of Bridges Using Wireless Sensors. (2012).
http://sha.md.gov/OPR_Research/MD-12-SP109B4M_
Low-Cost-Structural-Health-Monitoring-Using-Wireless-Sensors_
%20Summary.pdf

[39] Mustafa Emre Karagozler, Ivan Poupyrev, Gary K Fedder, and Yuri
Suzuki. 2013. Paper generators: harvesting energy from touching,
rubbing and sliding. In Proceedings of the 26th annual ACM symposium
on User interface software and technology. ACM, 23–30.

[40] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F.
Wenisch. 2016. High-Performance Transactions for Persistent Mem-
ories. In Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS ’16). ACM, New York, NY, USA, 399–411.

[41] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven
Pelley, Sihang Liu, Peter M. Chen, and Thomas F. Wenisch. 2016. Del-
egated Persist Ordering. In The 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-49). IEEE Press, Piscataway,
NJ, USA, Article 58, 13 pages.

[42] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM 21, 7 (1978), 558–565.

[43] Butler W. Lampson and David D. Redell. 1980. Experience with Pro-
cesses andMonitors inMesa. Commun. ACM 23, 2 (Feb. 1980), 105–117.

[44] Yann LeCun. 1998. The MNIST database of handwritten digits.
http://yann. lecun. com/exdb/mnist/ (1998).

[45] Yoonmyung Lee, Gyouho Kim, Suyoung Bang, Yejoong Kim, Inhee
Lee, Prabal Dutta, Dennis Sylvester, and David Blaauw. 2012. A modu-
lar 1mm 3 die-stacked sensing platform with optical communication
and multi-modal energy harvesting. In Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2012 IEEE International. 402–404.

[46] Philip Levis and David Culler. 2002. Maté: A tiny virtual machine for
sensor networks. In ACM Sigplan Notices, Vol. 37. ACM, 85–95.

[47] Philip Levis and David Gay. 2009. TinyOS programming. Cambridge
University Press.

[48] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin
Whitehouse, AlecWoo, David Gay, Jason Hill, Matt Welsh, Eric Brewer,
and others. 2005. TinyOS: An operating system for sensor networks.
Ambient intelligence 35 (2005), 115–148.

[49] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B Giffin, Shane
Leonard, Pat Pannuto, Prabal Dutta, and Philip Levis. 2017. The Tock
Embedded Operating System. In Proceedings of the 15th ACM Confer-
ence on Embedded Network Sensor Systems. ACM, 45.

[50] Linux Kernel Organization. [n. d.]. Software Interrupt Context: Softirqs
and Tasklets. https://www.kernel.org/doc/htmldocs/kernel-hacking/
basics-softirqs.html. Accessed: 2018-11-16.

[51] Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gollakota, David
Wetherall, and Joshua R. Smith. 2013. Ambient Backscatter: Wireless
Communication out of Thin Air. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM (SIGCOMM ’13). 39–50.

[52] Brandon Lucia and Benjamin Ransford. 2015. A simpler, safer program-
ming and execution model for intermittent systems. In ACM SIGPLAN
Notices, Vol. 50. ACM, 575–585.

[53] Kaisheng Ma, Xueqing Li, Jinyang Li, Yongpan Liu, Yuan Xie, Jack
Sampson, Mahmut Taylan Kandemir, and Vijaykrishnan Narayanan.
2017. Incidental computing on IoT nonvolatile processors. In Pro-
ceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 204–218.

[54] Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan,
Xueqing Li, Yongpan Liu, Jack Sampson, Yuan Xie, and Vijaykrishnan
Narayanan. 2015. Architecture exploration for ambient energy harvest-
ing nonvolatile processors. In High Performance Computer Architecture
(HPCA), 2015 IEEE 21st International Symposium on. IEEE, 526–537.

[55] KiwanMaeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Intermit-
tent Execution without Checkpoints. In Proceedings of the 2017 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. ACM.

[56] KiwanMaeng and Brandon Lucia. 2018. Adaptive dynamic checkpoint-
ing for safe efficient intermittent computing. In Proceedings of the 12th
USENIX conference on Operating Systems Design and Implementation.
USENIX Association, 129–144.

[57] Kirk Martinez, Royan Ong, and Jane Hart. 2004. Glacsweb: a sensor
network for hostile environments. In Sensor and Ad Hoc Communi-
cations and Networks, 2004. IEEE SECON 2004. 2004 First Annual IEEE
Communications Society Conference on. IEEE, 81–87.

[58] Azalia Mirhoseini, Ebrahim M Songhori, and Farinaz Koushanfar. 2013.
Idetic: A high-level synthesis approach for enabling long computations
on transiently-powered ASICs. In Pervasive Computing and Communi-
cations (PerCom), 2013 IEEE International Conference on. IEEE, 216–224.

[59] Kevin E Moore, Jayaram Bobba, Michelle J Moravan, Mark D Hill,
David A Wood, et al. 2006. LogTM: log-based transactional memory..
In HPCA, Vol. 6. 254–265.

[60] Saman Naderiparizi, Aaron N Parks, Zerina Kapetanovic, Benjamin
Ransford, and Joshua R Smith. 2015. WISPCam: A battery-free RFID
camera. In RFID (RFID), 2015 IEEE International Conference on. IEEE.

[61] Matheus Almeida Ogleari, Ethan L Miller, and Jishen Zhao. 2018. Steal
but no force: Efficient hardware undo+ redo logging for persistent

1099

http://sha.md.gov/OPR_Research/MD-12-SP109B4M_Low-Cost-Structural-Health-Monitoring-Using-Wireless-Sensors_%20Summary.pdf
http://sha.md.gov/OPR_Research/MD-12-SP109B4M_Low-Cost-Structural-Health-Monitoring-Using-Wireless-Sensors_%20Summary.pdf
http://sha.md.gov/OPR_Research/MD-12-SP109B4M_Low-Cost-Structural-Health-Monitoring-Using-Wireless-Sensors_%20Summary.pdf
https://www.kernel.org/doc/htmldocs/kernel-hacking/basics-softirqs.html
https://www.kernel.org/doc/htmldocs/kernel-hacking/basics-softirqs.html

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Emily Ruppel and Brandon Lucia

memory systems. In High Performance Computer Architecture (HPCA),
2018 IEEE International Symposium on. IEEE, 336–349.

[62] Joseph A Paradiso and Mark Feldmeier. 2001. A compact, wireless,
self-powered pushbutton controller. In International Conference on
Ubiquitous Computing. Springer, 299–304.

[63] Joseph A. Paradiso and Thad Starner. 2005. Energy Scavenging for
Mobile andWireless Electronics. IEEE Pervasive Computing 4, 1 (2005).

[64] Aaron Parks, Alanson Sample, Yi Zhao, and Joshua R. Smith. 2013.
A Wireless Sensing Platform Utilizing Ambient RF Energy. In IEEE
Topical Meeting on Wireless Sensors and Sensor Networks (WiSNET).

[65] Steven Pelley, Peter M Chen, and Thomas F Wenisch. 2014. Mem-
ory persistency. In Computer Architecture (ISCA), 2014 ACM/IEEE 41st
International Symposium on. IEEE, 265–276.

[66] Steven Pelley, Peter M Chen, and Thomas F Wenisch. 2015. Mem-
ory Persistency: Semantics for Byte-Addressable Nonvolatile Memory
Technologies. IEEE Micro 35, 3 (2015), 125–131.

[67] Joseph Polastre, Robert Szewczyk, and David Culler. 2005. Telos:
enabling ultra-low power wireless research. In 4th international sym-
posium on Information processing in sensor networks. 48.

[68] Proteus Digital Health. 2016. Proteus Discover. http://proteus.com.
[69] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2012. Mementos:

System support for long-running computation on RFID-scale devices.
Acm Sigplan Notices 47, 4 (2012), 159–170.

[70] Torvald Riegel, Christof Fetzer, and Pascal Felber. 2006. Snapshot
isolation for software transactional memory. In First ACM SIGPLAN
Workshop on Languages, Compilers, and Hardware Support for Transac-
tional Computing (TRANSACT’06). 1–10.

[71] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L Hudson, Chi Cao Minh,
and Benjamin Hertzberg. 2006. McRT-STM: a high performance soft-
ware transactional memory system for a multi-core runtime. In Pro-
ceedings of the eleventh ACM SIGPLAN symposium on Principles and
practice of parallel programming. ACM, 187–197.

[72] Alanson P Sample, Daniel J Yeager, Pauline S Powledge, Alexander V
Mamishev, and Joshua R Smith. 2008. Design of an RFID-based battery-
free programmable sensing platform. IEEE Transactions on Instrumen-
tation and Measurement 57, 11 (2008), 2608–2615.

[73] Nir Shavit and Dan Touitou. 1995. Software Transactional Memory.
In Proceedings of the Fourteenth Annual ACM Symposium on Principles
of Distributed Computing. ACM, 204–213.

[74] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Bren-
nan, Mark D Corner, and Emery D Berger. 2007. Eon: a language and
runtime system for perpetual systems. In 5th international conference
on Embedded networked sensor systems. ACM.

[75] Phillip Stanley-Marbell and Diana Marculescu. 2007. An 0.9x1.2, low
power, energy-harvesting system with custom multi-channel commu-
nication interface. In Proceedings of the conference on Design, automa-
tion and test in Europe. EDA Consortium, 15–20.

[76] J Gregory Steffan and Todd C Mowry. 1998. The potential for using
thread-level data speculation to facilitate automatic parallelization.
In High-Performance Computer Architecture, 1998. Proceedings., 1998
Fourth International Symposium on. IEEE, 2–13.

[77] Ryo Sugihara and Rajesh K. Gupta. 2008. Programming Models for
Sensor Networks: A Survey. ACM Trans. Sen. Netw. 4, 2, Article 8 (April
2008), 29 pages.

[78] V. Talla, B. Kellogg, B. Ransford, S. Naderiparizi, S. Gollakota, and J. R.
Smith. 2015. Powering the Next Billion Devices with Wi-Fi. ArXiv
e-prints (May 2015). arXiv:cs.NI/1505.06815

[79] The SciPy Community. 2018. numpy.random.poisson .
https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/
numpy.random.poisson.html. Accessed: 2018-05-03.

[80] TI Inc. 2014. Overview forMSP430FRxx FRAM. http://ti.com/wolverine.
Accessed: 2014-07-28.

[81] TI Inc. 2017. Products for MSP430FRxx FRAM. http:
//www.ti.com/lsds/ti/microcontrollers-16-bit-32-bit/msp/
ultra-low-power/msp430frxx-fram/products.page. Accessed:
2017-04-08.

[82] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent com-
putation without hardware support or programmer intervention. In
Proceedings of OSDI’16: 12th USENIX Symposium on Operating Systems
Design and Implementation. 17.

[83] Nicolas Villar and Steve Hodges. 2010. The Peppermill: A Human-
powered User Interface Device. In Conference on Tangible, Embedded,
and Embodied Interaction (TEI).

[84] Haris Volos, Andres Jaan Tack, andMichaelM Swift. 2011. Mnemosyne:
Lightweight persistent memory. In ACM SIGARCH Computer Architec-
ture News, Vol. 39. ACM, 91–104.

[85] A. Wickramasinghe, D.C. Ranasinghe, and A.P. Sample. 2014. WIND-
Ware: Supporting ubiquitous computing with passive sensor enabled
RFID. In RFID (IEEE RFID), 2014 IEEE International Conference on.

[86] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris Patoukas, Koen
Schaper, Przemyslaw Pawelczak, and Josiah Hester. 2018. InK: Reactive
Kernel for Tiny Batteryless Sensors. In Proceedings of the 16th ACM
Conference on Embedded Networked Sensor Systems. ACM, 41–53.

[87] Zac Manchester. 2015. KickSat. http://zacinaction.github.io/kicksat/.
[88] Hong Zhang, Jeremy Gummeson, Benjamin Ransford, and Kevin Fu.

2011. Moo: A batteryless computational RFID and sensing platform.
Department of Computer Science, University of Massachusetts Amherst.,
Tech. Rep (2011).

[89] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P
Jouppi. 2013. Kiln: Closing the performance gap between systems with
and without persistence support. In Microarchitecture (MICRO), 2013
46th Annual IEEE/ACM International Symposium on. IEEE, 421–432.

1100

http://proteus.com
http://arxiv.org/abs/cs.NI/1505.06815
 https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.random.poisson.html
 https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.random.poisson.html
http://ti.com/wolverine
http://www.ti.com/lsds/ti/microcontrollers-16-bit-32-bit/msp/ultra-low-power/msp430frxx-fram/products.page
http://www.ti.com/lsds/ti/microcontrollers-16-bit-32-bit/msp/ultra-low-power/msp430frxx-fram/products.page
http://www.ti.com/lsds/ti/microcontrollers-16-bit-32-bit/msp/ultra-low-power/msp430frxx-fram/products.page
http://zacinaction.github.io/kicksat/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Intermittent Computing
	2.2 Concurrency in Embedded Devices
	2.3 Benefits of Interrupts in Intermittent Systems

	3 The Challenge of IntermittentEvent-Driven Concurrency
	3.1 Interrupts + Intermittent Operation
	3.2 Synchronization + Privatization

	4 Intermittent Interrupts with Coati
	4.1 Interaction Between Tasks and Events
	4.2 Multi-Task Transactional Execution

	5 Implementation Details
	5.1 Control Flow
	5.2 Memory Access
	5.3 Commit

	6 Buffi: A Buffering-Based Alternative
	6.1 Buffering and Serialization
	6.2 Buffi Transactions
	6.3 Buffi Implementation
	6.4 Buffer Design

	7 Evaluation
	7.1 Benchmarks and Methodology
	7.2 Correctness
	7.3 Programming Effort
	7.4 Events Captured
	7.5 Performance

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

