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Abstract

Emerging energy-harvesting computer systems extract en-
ergy from their environment to compute, sense, and commu-
nicate with no battery or tethered power supply. Building
software for energy-harvesting devices is a challenge, be-
cause they operate only intermittently as energy is available.
Programs frequently reboot due to power loss, which can
corrupt program state and prevent forward progress. Task-
based programming models allow intermittent execution of
long-running applications, but require the programmer to
decompose code into tasks that will eventually complete be-
tween two power failures. Task decomposition is challenging
and no tools exist to aid in task decomposition.

We propose CleanCut, a tool that can check for and report
non-terminating tasks in existing code, as well as automati-
cally decompose code into efficient, terminating tasks. Clean-
Cutis based on a statistical model for energy of paths through
the program. We applied a prototype of CleanCut to four
applications, including pattern-recognition, encryption, com-
pression, and data filtering. Our experiments demonstrated
the risk of non-termination in existing code and showed that
CleanCut finds efficient task decompositions that execute
2.45x faster on average than manually placed boundaries.
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1 Introduction

Recent advances in energy-harvesting technology, and the
advent of extremely low-power computing devices has en-
abled computer systems powered entirely by energy ex-
tracted from their environment. Without a battery or teth-
ered power, these devices are the key to emerging applica-
tions, like the internet of things (IoT) and implantable or in-
gestible medical devices [1, 24]. A typical energy-harvesting
device collects energy into a small energy buffer (i.e., a ca-
pacitor), until a threshold level, at which the device begins
to run. When operating, the device consumes energy very
quickly, depleting the capacitor and powering down. These
devices operate intermittently as energy is available in the
energy buffer.

Recent work identified key progress [38] and memory con-
sistency [30, 37] challenges faced by programmers targeting
energy-harvesting systems. Other work proposed mecha-
nisms to support non-trivial intermittent applications [3, 4,
9,10, 19, 20, 30, 38, 47]. Task-based intermittent programming
models [10, 30] ensure long-running applications execute
correctly on intermittent devices. Such a model asks the
programmer [30] or compiler [47] to decompose an appli-
cation into tasks that execute atomically. Checkpointing
volatile state and versioning non-volatile state makes tasks
restartable, but does not ensure that a task re-execution after
a power failure will have sufficient energy to complete. A
task will run to completion only if it consumes less energy
than the capacity of device’s energy storage buffer. To com-
plete tasks reliably, the device can depend only on stored
energy and not on extra energy that might be harvestable
from the environment during operation.

Task decomposition must be performed for existing task-
based systems, but it is difficult to reason about how likely a
task is to exhaust the buffered energy. An overly cautious
programmer may place more task boundaries in code than
necessary, wasting energy and imposing a time overhead.
If, the programmer uses too few boundaries, the program
may have a non-terminating path that requires more energy
than the device can buffer. A non-terminating path consumes
more energy than will ever be available, causing the task to
repeatedly restart and fail forever. Code including such a non-
terminating path represents a new type of software bug that
is unique to intermittent applications. There is currently no
system support to help find these bugs by assessing whether
a task boundary placement includes non-terminating paths,
nor for helping place task boundaries.
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This work is the first to characterize power-failure-related
non-terminating path bugs in intermittent programs. We
develop CleanCut, the first system for finding non-termi-
nating paths in intermittent programs and eliminating such
paths by generating terminating task boundary assignments
automatically. CleanCut’s checker checks a task boundary
assignment and reports non-terminating paths that need re-
finement. CleanCut’s placer subdivides a program into tasks
free of non-terminating paths. CleanCut minimizes overhead
by approximately bisecting paths and preferring boundaries
unlikely to be executed frequently.

Both the checker and placer use CleanCut’s statistical
model of the energy consumption of each program path.
Following the insights in [26], we base our path model on
a lower-level model of energy of branch-free basic blocks.
CleanCut’s top-level path energy model is compatible with
both worst-case or average-case block energy models based
on profiling and analytics [17, 26], performance counters [11],
or simulation [6]. CleanCut ships with a simple average-case
profiling-based block energy model.

We implemented CleanCut’s analyses in LLVM and ap-
plied them to applications from prior work [10, 30, 31]. We
show that CleanCut’s checker identifies task boundary as-
signments with non-terminating path bugs, demonstrating
its value as a debugging tool. We show that CleanCut’s placer
produces boundary placements that are free of non-termi-
nating paths and have lower overhead than manually- or
randomly-placed boundaries. To summarize our contribu-
tions:

e We develop the CleanCut task checker that finds non-ter-

minating path bugs.
e We develop the CleanCut placer that places task bound-

aries, eliminating non-terminating paths and minimizing

boundary overhead.
o We statistically model the energy cost of program paths

with loops and I/O in terms of basic block energy.
e We evaluate CleanCut on real energy-harvesting hard-

ware and demonstrated detected non-termination bugs
and placements that outperform manual decompositions.
Section 2 reviews intermittent computing and Section 3
overviews CleanCut. Sections 4 and 5 describe CleanCut’s
Checker and Placer . The energy model is presented in Sec-
tion 6. Section 7 provides implementation details, Section 8
evaluates CleanCut, and Section 9 discusses related work.

2 Background and Motivation

Embedded computers [43] and energy-harvesting devices
(e.g., WISP5 [39]) are finding widespread adoption. Hardware
advances have spawned research into general programming
and execution models for software on intermittently-powered
devices [3, 4, 7, 10, 20, 30, 38].

2.1 Energy-harvesting Devices

Energy-harvesting devices are embedded computing plat-
forms composed of a microcontroller and peripherals such as

sensors and radios. These devices extract their energy from
the environment, e.g. radio waves, vibration, or a thermal
gradient. Harvested energy sources are typically too weak
(by orders of magnitude) to directly power a device, requir-
ing devices to buffer energy in a capacitor. After buffering
a threshold amount of energy the device turns on and be-
gins executing software. Executing consumes energy more
quickly than it accumulates, depleting the buffer and causing
the device to power off. The active period of a device depends
on the size of its energy buffer. A typical energy-harvesting
device [39] may power cycle hundreds of times per second.

From the perspective of software, each power cycle is a re-
boot that impedes the progress of the computation. Volatile
state of the device, including its register file, stack mem-
ory, and global variables, is erased, while non-volatile mem-
ory (e.g., FRAM [43]) retains its state across failures. Recent
work [10, 30, 37, 47] observed that when volatile memory
erases and non-volatile memory persists, reboots leave pro-
gram state inconsistent. The issues with progress and con-
sistency inspired research on compiler and system support
for intermittent programming models.

2.2 Intermittent Programs and Execution Models

There are various intermittent programming and execution
models each with different correctness and performance
characteristics. The first efforts in this area focused on sched-
uling computations to complete under energy constraints [7,
41] and did not directly address intermittence. Later work
enabled long-running computations on intermittently-pow-
ered devices, relying on checkpoints of volatile state [3, 4,
20, 32, 38] and versioning of non-volatile state [10, 30] with
varying automation from the compiler [31, 47].

Task-based models [7, 10, 30, 31, 41] require programmers
to manually decompose code into tasks by adding task bound-
aries to a program in a C-like language. The quality of a task
boundary placement dictates whether a program terminates
and determines the time and space overhead of the system.
Task-based models maintain progress at the granularity of
a task. Consequently, if any path through a task consumes
more energy than the device can buffer, program execution
will not advance past that task. Such non-terminating path
bugs cause the program to partially execute a task repeatedly,
each time failing to reach the task’s terminal boundary.

To avoid these non-termination bugs, the programmer
must reason about the energy that a task consumes along
each of its control-flow paths. A programmer may attempt
naively to avoid non-termination by inserting many bound-
aries (e.g., after every operation), but each boundary imposes
an overhead to capture a checkpoint [20, 30, 38], commit a
log [31], or store multi-versioned state [10]. Moreover, our
data in Section 8 suggest that programmers might do a poor
job of judging the energy cost of code regions.

Figure 1 shows how different static task boundary assign-
ments lead to different behavior with three variants of an



Optimal Successful Too Few Non-terminating Too Many Wasteful
Task Boundaries Execution Task Boundaries Execution Task Boundaries Execution
main() main() main()
Energy Cost while(true) while(true) while(true)
sense(); o sense(); 1 sense(); g
main () { Q featurize(); main () { featurize(); main () { featurize();
while(true){ (4] classify(); A4 while(true){ PA classify(); while(true){ 39 classify(); 4
sense(); sense(); sense(); (4]
featurize(); cee _(:bo.ot featurize(); @@ sense(); featurize(); goe fbo.ot
classify(); Y cla§S| v0; ] classify(); featurize(); classify(); 30 C|a§5| V(); @
upd_stats(); gﬂtr;]stt(z;l.ts(), [V upd_stats(); classify(); upd_stats(); = @ gﬁt@stt(i)i_ts(), Ps
}Ompm(); 4@ while(rue) outputy; A }Ompmo; o® whie(rie &
} : —_— } sense(); }
: output(); featurize(); while(trueX
Task Boundary while(true){ PA classify(); sense(); g
: upd_stats(); :

Device Energy Buffer Max Capacity: @ @ @ @ (4 units)

Figure 1. Different task decompositions cause different execution behavior.

activity recognition application from prior work [10, 30, 31].
The code featurizes and classifies data from a sensor, main-
tains statistics, and produces output. The energy cost of a
task is illustrated in terms of abstract energy units, repre-
sented by the lightning bolt circles between the task’s initial
and terminal boundary. The figure assumes a device that
can buffer at most four energy units. The left variant of the
program is decomposed into tasks using three boundaries.
The energy consumption of the resulting tasks does not ex-
ceed the device’s energy capacity and the depicted execution
makes progress with little boundary overhead, despite peri-
odic reboots. The middle variant has a non-terminating path
bug because it is decomposed with too few boundaries. This
variant’s most costly task consumes more energy than the
device can buffer. Consequently, the application can never
make progress, rebooting and re-executing the task indef-
initely. The right variant is inefficient because it uses too
many task boundaries because the energy cost of each task
fits within the device capacity and boundaries execute more
often than necessary, wasting time and energy.

Despite the importance of placing task boundaries, doing
so remains a difficult, manual process for which there is no
system support. The programmer must draw a correspon-
dence between a code span and its energy cost, accounting
for variation across inputs and the energy consumption of
the full system, including peripherals. The connection be-
tween code and energy capacity of the device is opaque.
The compiler provides no feedback about a task boundary
placement. Instead, the programmer is left to guess whether
tasks will terminate, or if boundary overhead will throttle
throughput. To port to another platform, the programmer
must decompose the code again. Adoption of task-based
intermittence models is impeded by the lack of support to
check that a decomposed program is free of non-terminating
path bugs and to place task boundaries to avoid these bugs
by construction. CleanCut fills both of these gaps.

3 CleanCut Overview

CleanCut is both a debugging tool and a program transforma-
tion analysis that helps a programmer place task boundaries
in a program written for a task-based intermittent execution
model. CleanCut has two modes of use, as a checker (Sec-
tion 4) or as a placer (Section 5). Both analyze paths through a
program, i.e. sequences of basic blocks allowed by the edges
in the control-flow graph, and rely on a statistical model for
the energy of a path (Section 6).

CleanCut’s checker is a debugging tool that examines a
task boundary placement and checks for non-terminating
path bugs. A non-terminating path bug stems from a misuse
of task boundaries that allows a path through a task to con-
sume more energy than the maximum amount of energy that
the target device can buffer. The program’s source and the
energy buffering capacity of the target device are inputs to
the checker. If the checker finds a path that consumes more
energy than the device can buffer (i.e., a non-terminating
path bug), the checker reports the path to the programmer,
along with the boundaries of the task containing the non-
terminating path. The programmer can then adjust the task
boundaries — by moving existing boundaries or adding new
ones — to eliminate the bug. The checker is particularly
useful to a programmer that prefers fine-grained manual
control over boundaries to ensure that, for example, related
I/O operations execute in the same task.

CleanCut’s placer is a program transformation that adds
task boundaries to a program to avoid non-terminating path
bugs. The goal of the placer is to produce a task boundary
assignment that is free of non-terminating paths and that
minimizes the overhead of executing task boundaries. The
placer works iteratively and each iteration evaluates the cur-
rent task boundary assignment to identify non-terminating
paths. The placer selects the non-terminating path of highest
energy cost to subdivide, and inserts a new task boundary
along the path to divide the path into two sub-paths of ap-
proximately equal energy cost. To minimize task boundary
overhead, the placer avoids placing boundaries in loops with
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a high iteration count and in functions that are called from
many call sites. The placer is most useful to a programmer
that has fewer platform-specific requirements in their appli-
cation, and benefits more from a fully-automated workflow.

4 CleanCut Non-termination Checker

CleanCut’s non-termination checker evaluates a task decom-
position to report non-terminating paths to the programmer
if any exist. CleanCut compares an estimate of the energy
of each path to an estimate of the storage capacity of the
energy buffer on the device and identifies non-terminating
paths statistically, relying on the distributional representa-
tion of path energy consumption from the model. If there is a
non-zero probability that a path energy exceeds the storage
capacity, then CleanCut reports the paths along with the
non-termination probability.

Modeling Device Energy Capacity. Energy available
to execute a path is determined by the size of the capacitor
installed on the device. To estimate the effective energy ca-
pacity, illustrated on the left in Figure 2, CleanCut measures
energy consumed starting from the first application task un-
til power failure, as described in Section 7.1. The estimate is
the minimum observed sample. We assume that variations in
capacity at runtime induced by temperature or degradation
are negligible.

To identify non-terminating paths, CleanCut estimates
the energy consumption for each path, as a distribution over
energy values. The algorithm for estimating the probability
density function (PDF) of each path energy is part of the en-
ergy model, described in Section 6. CleanCut then compares
the path energy to the energy storage capacity of the device,
as is shown in the center of Figure 2. The first step of the
comparison is to transform a path’s PDF into a cumulative
density function (CDF) by integrating the PDF with respect
to energy. The value of a path’s PDF at a particular energy
level represents the likelihood that the path will consume
that much energy. The value of a path’s CDF at a particular
energy level represents the likelihood that the path will con-
sume that amount of energy or less. The value of a path’s CDF
at the device’s energy buffering capacity thus corresponds
to the probability that the path is not a non-terminating
path. We report potentially non-terminating paths to the
programmer, each with its corresponding non-termination
probability, as shown on the right in Figure 2.

Algorithm 1 CleanCut program decomposition algorithm.

1: function DEcompose(CFG G, device model D) > program G on device D
B<0 > Initialize set of boundary locations
do
> Evaluate the energy model and return max e s.t. Prob(energy = e) > 0
P « CALCPATHENERGIES(G, B) > Stores energies into field Energy[]
P« argmax,p Energy[p] > Pick path of maximum energy

if Energy[p] > Capacity[D] then v Is path predicted to exceed capacity?

if |p| > 1 then > Only splits at block granularity are supported
b « SpLitPATH(p, D) > Place a boundary
B« BUbD > Add the boundary to the decomposition
else

return “NO PLACEMENT EXISTS”
while Energy[p] > Capacity[D]
return B
15: function SprLTPATH(path p, device model D)
16: m < 1+ argmax; 2;‘:0 Energy[p;] < Energy[p]/2for0 < k < |p|
17: for i < 0to m do

U
BN RO DR

18: if IsLoop[p;] A Energy[p;] > Capacity[D] then

19: L < BodyPaths[p;] > Block p; is loop head, get loop body paths
20: | « argmax;.; Energy[l]

21: return SpLiTPATH(/, D)

ke[, s] Energylpg]
se[1,m] Etg[lym] Energy[pz]

DyYNBOUNDARIES(ps, p)
mMaXse[1 ) DYNBOUNDARIES(pz, p)

22: return arg max

23: function DynBounbaRries(block b, path p) > Estimates dynamic transitions
24:  return Y peplinedinstancesOfBlock[ps ] loopL|ber LoopBound([L]

5 CleanCut Task Boundary Placer

The CleanCut task boundary placer inserts boundaries into
a program to eliminate non-terminating paths while mini-
mizing boundary overhead. The placer’s core is the greedy
algorithm listed in Algorithm 1. The main loop in DEcoM-
pOSE repeatedly divides the path with the highest energy
cost by placing a boundary along the path. Each iteration
begins with estimating the energy for all paths through the
program (Line 5) according to the energy model (Section 6)
and storing the estimate as a distribution in the Energy(]
field of each path object. For the division and comparison
operations (but not addition), the distribution is reduced to a
scalar value. The reduction operator is configurable to either
the expectation or the maximum observed value; to model
worst-case behavior we use the latter with the energy model
from Section 6.

The algorithm then selects the highest energy path (Line
6) and, if its energy cost exceeds the device energy capacity
(Line 7), the algorithm calls SpLiTPATH to choose a location
on the path for a boundary (Lines 8-10) using criteria ex-
plained in Section 5.1. The set of paths P is recomputed on
the next iteration, because the new boundary affects not only
the path being split but also all paths with a call to the func-
tion that contains the new boundary. The placer completes
when the costliest path is within the energy capacity of the
device (Line 13).

The algorithm must divide looping paths with a high en-
ergy cost, even if those looping paths are contained within
an abstract loop block (Section 6.2.1). If the traversal over
blocks in a path encounters an abstract loop block (Line
18), the algorithm descends into the abstract loop block if
the energy cost of the loop exceeds capacity (Line 18) and
inserts a boundary along the most costly path in the loop



body (Lines 19-20). A boundary placed along a path through
a loop, invalidates the energy estimate for that loop until it
is recomputed in the main loop (Line 5).

5.1 Minimizing Task Boundary Overhead

The location of a boundary determines its run-time energy
and time overhead. Given a path p, SpLITPATH finds the loca-
tion in p where a boundary will have the least impact. The
algorithm identifies the energy midpoint of the path, i.e., the
block at which energy accumulated from either end of the
path is below half of the total path energy (Line 16). SPLIT-
PaTH places the boundary at one of the candidate split points
between the start and the midpoint of the path. The algo-
rithm could consider the split points between the midpoint
and the end of the path but does not in order to save time.

SpLITPATH assigns each candidate split block a score and
chooses the candidate with the highest score (Line 22). The
split score measures the impact of a boundary using two
components: the relative energy of the two segments after
the split and the expected number of dynamic task bound-
aries. A static task boundary at block b leads to as many
dynamic task boundaries as there are calls to b’s parent func-
tion and iterations of (nested) loops that include b at runtime.
Function DYNBOUNDARIES (Line 24) estimates the dynamic
calls and loop iterations from the inlined version of the pro-
gram CFG — where each call is recursively replaced with the
callee’s blocks — and from loop bounds. The placer algorithm
assumes that the best candidate split point for a boundary is
the one that leads to the fewest dynamic boundaries.

5.2 Placer Algorithm Analysis

Correctness. If a placement exists that is free of non-ter-
minating paths according to CleanCut’s energy model, then
the placer algorithm will find such a placement; otherwise
it will report failure. A valid placement is a placement for
which CleanCut’s model indicates that all path energy costs
are below the device energy capacity. If the loop in DE-
COMPOSE terminates, then placement B is valid, because
the negation of the loop condition (Line 13) implies that
the maximum-energy path p is below capacity, which im-
plies that all paths are below capacity. The loop in DEcom-
POSE terminates if the least upper bound on the energy of
a path in set of paths P’ (set P in iteration i) strictly de-
creases, i.e. max,¢pi Energy[p] > max,cpi+1 Energy(p], be-
cause the right hand side of the inequality in the loop con-
dition (Capacity[D]) is constant. The least upper bound on
energy of P decreases in iteration i, if SPLITPATH is called on
the maximum-energy path in iteration i and if SpLiTPATH
decreases the least upper bound.

SpLITPATH is called on all but the last iteration, because
on the iteration in which SpLITPATH is not called, either the
condition in Line 7 is false, which implies the loop condi-
tion is false, or the condition on Line 8 is false which vio-
lates the premise that a valid placement exists (i.e., some
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block exceeds the energy capacity). SPLITPATH decreases the
least upper bound on energy of paths in P, because SpLiT-
PATH inserts a boundary at the block at index s € [1,m]
in maximum-energy path p (maximum selected in Line 22),
which excludes at least block py from the maximum-energy
path in the next invocation of CALCPATHENERGIES (Line 5).
That the maximum-energy path is shortened follows from
the fact that (1) energy is strictly increasing in the number
of blocks in the path, regardless of the type of the block, (2)
boundaries are strictly appended to the set of boundaries B,
and (3) adding a boundary to program CFG G with bound-
aries B cannot increase the length of any path in G.

Complexity. Let W(n, e) be the number of blocks tra-
versed by the greedy placer algorithm for a program with
n paths and the costliest path of energy e. At each itera-
tion of the outer loop, the algorithm splits one path, which
may create boundaries on every path in the worst case, dou-
bling the number of paths for the next step, but cutting the
maximum energy in half (since the split is done near the
energy-midpoint). That is, W(n,e) = n + W(2 = n, e/2) with
W(n,e) = nfor e < C, where C is the device capacity. The
recurrence is bounded by O(n * 2l°g¢+1),

6 CleanCut Energy Model

CleanCut’s non-termination bug checker and task boundary
placer both rely on a statistical model of the energy con-
sumed by each control-flow path from one task boundary to
another. The model computes a path’s energy by combining
the energy of its constituent basic blocks. We chose to model
path energy based on basic block energy, as opposed to sin-
gle instruction energy, to produce estimates closer to the ob-
servable average case rather than the theoretical worst-case,
following the insights in [26]. In addition, since profiling is
part of the programmer’s workflow in CleanCut, we avoid
relying on high-resolution measurement hardware to collect
per-instruction estimates. With a block-based model, as with
a detailed instruction-level model, energy estimates must be
recomputed as code changes.

6.1 Block Energy Model

A basic block energy model compatible with CleanCut rep-
resents the consumed energy as a probability distribution
that indicates how likely the block is to consume different
amounts of energy. A distributional model captures the range
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of possible energy costs of a block, which is necessary to es-
timate the probability of a non-termination bug manifesting.
Figure 3 on the left illustrates that CleanCut measures an en-
ergy distribution for each block in a program’s control-flow
graph, using the procedure described in Section 7.2.

We chose to make CleanCut’s energy model distributional
to avoid losing information about possible path energy con-
sumptions. A distributional model captures more informa-
tion than a scalar worst-case energy model about whether a
non-termination bug will manifest. A distributional model
lets CleanCut’s non-termination bug checker report the like-
lihood that a path will not terminate to the programmer. Re-
porting non-terminating path bugs with their manifestation
likelihood enables the programmer to prioritize potential
non-termination issues.

CleanCut is designed to accept any distributional block
energy model that can represent the distribution as a discrete
histogram. Our prototype implementation of CleanCut uses a
measurement-based block energy model, because it accounts
for the total energy of the board, including sensors and ra-
dios, does not rely on any models of low-level circuit power
behavior, and was effective in our evaluation (Section 8). The
potential drawback of this measurement-based prototype
is that it may not capture all of a block’s energy behaviors,
potentially underestimating the block’s worst case energy
as the maximum energy observed during measurement.

The potential drawbacks of the measurement-based model
in our prototype are not inherent to CleanCut’s path model-
ing approach, however, and CleanCut could instead use an
analytical block model derived from device characteristics
and application analysis [8, 23, 26, 45]. Using an analytical
model has the advantage of being able to estimate theoretical
worst-case energy, and can provide estimates that cover all
program inputs. However, analytical models, too, have draw-
backs: analytical models typically capture only processor
power since other board components like sensors and radios
require fundamentally different modeling methodologies. As
better energy models arise, CleanCut can incorporate them.

6.2 Path Energy Model

CleanCut uses the block energy distributions to compute
the energy distribution of each path in the program, as il-
lustrated in Figure 3 on the right. CleanCut’s path energy
model accumulates the cost of blocks along a path from its

initial task boundary to its terminal task boundary. A path
is a non-branching sequence of basic blocks (Section 6.1),
loop blocks (Section 6.2.1), or opaque blocks (Section 6.2.2).
CleanCut’s target programming model does not support re-
cursion, which is uncommon in embedded software where
predictability and static resource bounds are often required.

To compute path energy, CleanCut must aggregate the
energy of the various types of blocks that comprise the path.
If CleanCut represented block energy with a scalar, then it
could calculate the energy of a path by simply adding the
energy costs of the blocks that make up that path. However,
CleanCut represents the energy of each block as a distribu-
tion, which precludes simple addition. To accumulate block
costs, CleanCut convolves the energy distributions for the
blocks along the path. Convolving the distributions for two
random variables (i.e., two block energy distributions) pro-
duces a distribution for the random variable that is their sum.
Any two arbitrary distributions can be convolved. CleanCut
sequentially convolves blocks on a path yielding a distribu-
tion representing the energy cost of the path.

6.2.1 Loops

CleanCut handles loops by encapsulating their energy cost
in an abstract loop block, as shown in Figure 4. CleanCut
abstracts a loop’s body by using a single distribution to rep-
resent the energy cost of all paths from the head of a loop to
its back edge. A nested loop is recursively abstracted and in-
corporated into a path through the parent loop. Along a path
with a loop, CleanCut convolves the loop body’s energy dis-
tribution once per loop iteration along with the distributions
of the other blocks on the path.

A loop body with many control-flow paths has a modal
energy distribution, with a mode at the expected energy cost
of each path. As illustrated in Figure 4, CleanCut computes
this modal distribution by mixing the distributions for each
of the paths through the loop body. To produce an energy
model for a path containing a loop, CleanCut convolves the
loop body’s distribution with the path energy distribution
a number of times equal to the estimated loop bound. By
default, the loop body’s mixture model uniformly combines
the intra-loop distributions, treating each path through the
loop as equally likely. CleanCut provides an implementation
of Ball-Larus path profiling [2] that can determine the likeli-
hood of each path by monitoring representative executions
to use as weights in the mixture.

Loops present two main challenges to any analysis. First,
the iteration count of an unbounded loop is statically un-
knowable. Second, an efficient analysis must not unroll the
loop. To account for the iteration count of a loop, CleanCut
requires the programmer to provide a bound estimate, as
depicted on the arc (U, Q) in Figure 4. For unbounded loops,
CleanCut gives the programmer a choice of either providing
an annotation statically bounding its iteration count (similar



Algorithm 2 CleanCut path energy estimation algorithm.

function CALcPATHENERGIES(CFG G, block b)
if IsLeaf[b] V IsBoundary[b] V IsLoopSucc[b] then
return {0}, 0
E—0, S<0

1:

2

3

4: > Path energies and successors
5: if — IsLoopHead[b] then

6.

7

8

> Add energy of a block
for s € Successors[b] do

Eg, Ss < CALCPATHENERGIES(G, s)

E—EUE;,, S« SUS;

9: else > Add energy of a loop
10: e —0, S0 > Loop energy and successors
11: for s € Successors[b] do
12: E;, S < CALCPATHENERGIES(G, S)

13: E; « {e € E, : EndsAtBackedge[Path[e]]}
14: e — e Qefore € Ef

15: E«— EU(Es\ E)

16: S|« S USs

17: e < e; X Looplters[b]

18: for s € S;do > Add loop to paths after the loop
19: E;, S < CALCPATHENERGIES(G, 5)

20: E—EU{e ®de:e € E}

21: S—SUS

22: if E # (0 then return {e ® Energy[b]: e € E}, S
23: else return {0}, 0

to k-bounded [14] profiles and often simple for embedded ap-
plications) or forcing a task boundary inside the loop, which
effectively eliminates the loop from the task. For the former
choice, to help the programmer determine the loop iteration
count, CleanCut has a loop iteration count profiler that can
measure the histogram of a loop’s iteration counts. The ac-
curacy of the profile for dynamically-bound loops is limited
by the sensor inputs during profiling.

6.2.2 I/O Operations

CleanCut accounts for the energy cost of I/O operations.
The energy of I/O that is contained within a basic block is
accounted within the energy for the containing block. Com-
posite multi-block I/O operations (e.g. polling a peripheral)
are abstracted into opaque blocks. CleanCut measures the
energy distributions for opaque blocks in-place during a ded-
icated instrumented run of the application.

6.3 Evaluating the Energy Model in the Compiler

CleanCut’s compiler uses the recursive procedure shown in
Algorithm 2 to calculate each path’s energy probability den-
sity function (PDF). Before the algorithm runs, a preliminary
pass splits any basic blocks with a call instruction and inlines
the callee’s blocks, recursively. The traversal starts at the
entry block and recursively descends along each path until
a task boundary or a program-terminating block (Line 2). A
recursive call (Line 7) returns a list of energy distributions,
E;, for paths that start from the intermediate node and a
list of entry blocks into successor tasks, Ss. Each frame adds
the current block’s energy to each sub-path that starts at a
block’s child by convolving (®) the distributions (Lines 8, 22)
and the current block’s successors list, S, is extended with
its children’s successors, S5 (Line 8). To add the energy of
a k-iteration loop to a path, the pass recursively computes
the energy of each loop body path (Line 12), mixes them (®)

= Modeled Path AXB Modeled Path A(X|Y)*B
= Modeled Path AYB Observed
=~ Modeled Path AXYB

Modeled Probability Density

" z

0
10 12

2 4 6 8
Energy (1))

Figure 5. Modeled and observed distributions for energy of four
paths through a benchmark application (left). The match between
locations of the modes on the x-axis validates that CleanCut modeling
abstractions correctly represent energy behavior.

(Line 14), and convolves the resulting block with itself (x) k
times (Line 17). The loop energy is then convolved with each
path starting after the loop (Line 20). The set of loop body
paths E; excludes paths that descend into the loop body but
reach a task boundary before a backedge (Line 15).

6.4 Energy Model Benchmarking

We applied the path energy computation to a microbench-
mark to show that the distribution computed by recursive
convolutions and mixtures matches the measured energy of
the path. Figure 5 shows a CFG with four paths comprising
simple sequences of blocks and a loop. Each path is com-
posed of three or more blocks of four types, labeled A, B,
X and Y, that differ in energy cost. Branches are decided
uniformly randomly. The probability density function (PDF)
curves in Figure 5 show each path’s estimated energy distri-
bution. ! The bars in the plot show path energies measured
on the WISP [39] during the 294 independent executions of
the program over 5 minutes. There is no correspondence
between the scales of the left and right y-axes beyond the
relative heights of modes within data for a single path.

The key result is that the x-axis position of peaks in a
path’s modeled distribution corresponds to the path’s peak
in the observed energy values. The match for path AXYB
shows that the energy cost of a sequence of blocks, XY, is
correctly modeled by the convolution of energy distributions
for X and Y. The match for each of the 5 modes in the dis-
tribution for path A(X|Y)*B shows that the cost of a loop is
correctly modeled by a mixture of energy distributions of the
paths through its body. The data also show that CleanCut un-
derestimated path energy variance and overestimated values
in the upper range. CleanCut derives its variance estimate
from the variance of energy of individual blocks and block
energy variance is smoothed because block measurements
are an average of replicas (Section 7.2). CleanCut overes-
timates block energy values in the upper range (10-12 pJ),
because CleanCut’s block model conservatively assumes that
all blocks execute at the maximum voltage, consuming their
worst-case energy.

For a PDF f, f(x) may exceed 1, but ff(x) dx <1.



7 CleanCut Implementation

The toolchain is organized as a tree of dependent analysis
phases in GNU Make, with the checker and placer results
near the root and requisite models and profiles at intermedi-
ate and leaf nodes. Independent phases run in parallel.

7.1 Energy Measurement

CleanCut programatically controls the Energy-interference-
free Debugger (EDB) [9] connected to the capacitor on the
target device to measure energy. For each measurement,
CleanCut places two voltage watchpoints in the application
code and EDB records the capacitor voltage at the watch-
points. Energy consumed between the watchpoints depends
on the watchpoint voltage measurements, Vsom and Vi, and
device capacity, C, as E = %C (foom - Vti) Using EDB, Clean-
Cut directly measures full-system energy, including the en-
ergy consumed by peripherals, e.g. sensors and actuators.

Using our energy measurement setup, we measure the en-
ergy storage capacity on the device and block energy costs.
Assuming V, is the voltage when the initialization com-
pletes and the first application task begins and Vg is the
MCU’s brown-out threshold, CleanCut computes the effec-
tive capacity using Viom = Von and Vio = Vogg. Vo is measured
by running the application binary with an EDB watchpoint
after power-on code. Vo is set from the MCU’s specification
(we validated that Vg = 1.8 £ 0.002V for our MSP430FR5969
using an EDB watchpoint).

7.2 Block and Path Energy

To measure a block’s energy cost, CleanCut extracts assem-
bly generated by LLVM’s backend for the target architec-
ture, translates the instruction arguments to make the block
runnable outside its context, replicates it, and inserts it into
a harness binary for measurement. To make the block safe to
execute repeatedly outside of its context, CleanCut replaces
register references with a designated “scratch” register and
memory references with random addresses in a designated
range. CleanCut generates harness code with the applica-
tion’s clocking and peripheral configuration to reflect true
energy consumption. After running the harness binary on
the device for 20s and tracing watchpoints, CleanCut cal-
culates the block energy from watchpoints as described in
Section 7.1. CleanCut replicates the block being measured
in the harness, to ensure that the measured energy is above
EDB’s watchpoint measurement resolution. The block’s en-
ergy cost is the energy cost of the sequence of replicas, di-
vided by the replication factor. After a code change, CleanCut
only profiles blocks that changed.

To estimate the path energy distribution (PDF) described
in Section 6.2, an LLVM pass first traverses the CFG accord-
ing to Algorithm 2. The pass assembles an expression that
symbolically represents the path energy distribution as a

sequence of convolutions and mixtures of block distribu-
tions. To evaluate the resulting expression to a numerically-
represented probability density function (PDF), CleanCut
computes convolutions using NumPy [16] and mixtures as
an element-wise linear combination of input PDFs.

7.3 Checker and Placer

The checker computes a cumulative distribution function
(CDF) by integrating the PDF that represents path energy
using Simpson’s method in SciPy [21]. CleanCut uses the
CDF to determine a path’s failure likelihood for a given de-
vice energy capacity C by finding the probability value at the
closest index below C in the CDF’s array representation. The
same CDF can be used to validate for a range of capacities.

We implemented the placer (Algorithm 1) in an LLVM pass
that incorporates the path energy model. The pass selects
the blocks at which to place task boundaries according to
the traversal of the CFG in Algorithm 1. The placer invokes
the DINO [30] LLVM passes to insert checkpointing and
versioning code at each boundary marker.

8 Evaluation

In this section, we evaluate CleanCut to show that the checker’s
validations are useful, the placer is flexible and its task de-
compositions efficient, and analysis time is practical for a
real developer. We applied CleanCut to real code on real
energy-harvesting hardware. We used the WISP [39] energy-
harvesting device, which has an 8MHz MSP430FR5969 MCU
with 64KB of non-volatile memory and a 47uF capacitor. We
powered the WISP wirelessly using a ThingMagic Astra-EX
RFID reader at 16 dBm. We fixed the WISP 45 cm from the
power antenna, parallel to its surface.

8.1 Benchmarks

We evaluated CleanCut on four energy-harvesting applica-
tions from prior work [10, 30]. Activity Recognition (AR) clas-
sifies 8 windows with 8 accelerometer samples each into two
activity classes based on a pre-trained model. RSA encrypts
an 11-character plaintext with a 32-bit public in non-volatile
memory. Cuckoo Filter (CF) exercises a Bloom-filter-like set
membership structure that supports deletion. CF inserts 64
pseudo-random keys and then queries for each. The Cold-
chain Equipment Monitor (CEM) records 64 temperature
readings from a sensor, LZW-compresses them, and stores
the result into non-volatile memory.

8.2 Placer Evaluation

We evaluated how well CleanCut’s placer helps to insert task
boundaries into a program to avoid non-terminating paths.
The evaluation shows that CleanCut’s decompositions are
superior to the programs’ original, manually placed bound-
aries and random placements. Our results also show that
CleanCut provides flexibility to changing hardware, while
avoiding non-terminating placements.



8.2.1 Performance

The main result of our placer evaluation is that CleanCut
produces higher-quality, more efficient placements than a
modular, manual decomposition strategy and a large num-
ber of randomly-generated potential boundary placements.
We assess the quality of a decomposition by measuring the
run time of the decomposed application on the real device.
Modular decomposition is an intuitive manual approach of
placing a task boundary at the entry of each major func-
tion or outer loop, and is currently the main approach to
task definition. Random decompositions place boundaries
at basic blocks chosen uniformly at random from the CFG.
Random decompositions systematically quantify the missed
opportunity for performance improvement due to poor task
boundary placement. We generated 10 random decomposi-
tions for each possible boundary count between 1 and 10, for
a total of 91 distinct decompositions (there is only one one-
boundary placement because CleanCut requires a boundary
at the top of main). We measured execution time by wrap-
ping the main function with EDB watchpoints that collect
timestamps when hit.

Figure 6 compares run times for CleanCut, manual mod-
ular, and random decompositions. CleanCut consistently
outperforms the modular decomposition, with a harmonic
mean speedup of 2.45x. CleanCut also outperforms all ter-
minating random decompositions for AR and CEM, and is
slower only than 2 out of 78 random placements for RSA and
7 out of 68 for CF. Several of the random decompositions that
are slower than CleanCut are slower by an order of magni-
tude or more. The placer’s decompositions are more efficient,
because they contain fewer boundaries than manual and ran-
dom decompositions, incurring less checkpointing overhead.
The low boundary count is a benefit of CleanCut’s energy
model: the placer’s algorithm splits the path with the high-
est energy cost maximally amortizing boundary cost across
the largest available span of code. In contrast, manual de-
compositions have many boundaries, because the authors of
these applications were conservative and relied on intuition
alone to estimate task energy cost. The overly conservative
assumptions lead to the high overhead in Figure 6.

8.2.2 Adaptation to Changing Hardware

CleanCut is parameterized by the energy storage capacity of
the target device. This flexibly lets the user apply CleanCut as
hardware specifications change. The manual decomposition
strategy lacks flexibility: A decomposition that is valid on
one device, may not terminate on a device with a smaller
energy buffer, and may be inefficient on a device with a
larger buffer. Figure 7 shows how CleanCut selects a different
boundary count for different target energy capacity. The
counterintuitive increase in boundary count with capacity
is a result of the placer ’s greedy algorithm.
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Figure 6. Application execution time when decomposed by Clean-
Cut, manually, or randomly. Random decompositions are grouped into
completing within one minute (Rnd-Good), completing after a long time
(Rnd-Slow), and not completing (Rnd-NT). The speedup of CleanCut rel-
ative to the manual strategy is shown in the annotations.
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Figure 7. Number of task boundaries in CleanCut decompositions.
As opposed to a manual decomposition, CleanCut adapts its decompositions
to the energy capacity available on the device.

8.3 Checker Evaluation

We evaluated CleanCut’s checker by using it to identify non-
terminating path bugs in the same pool of random decom-
positions used in Section 8.2. The goal of this evaluation is
to show that the checker reliably reports non-terminating
paths and rarely reports that a path is non-terminating when
it is terminating. After obtaining the checker ’s predictions
for each path in each decomposition, we executed the decom-
position on the WISP energy-harvesting device on RF power.
During execution some (unknown) subset of the program’s
paths executed, depending on the real experimental input
from the sensors. The outcome of each execution is either
that the decomposition terminated, implying that no path
that executed had a non-termination bug, or that the decom-
position did not terminate, implying that a non-terminating
path executed. A non-termination prediction for a program



may not match the observed behavior because not all paths
execute in all runs as a result of input variation.

Figure 8 plots the predicted energy for every path in any
decomposition that terminated (left plots) and that did not
terminate (right plots). Groups of paths from the same decom-
position are adjacent, of the same color, and sorted by energy.
The horizontal line indicates the measured energy capacity
of the device. The plot does not show which paths did not
terminate, because our measurement setup does not trace
individual path executions while running on intermittent
power (a task for which there exists no simple methodol-
ogy today). For a terminating decomposition, we expect that
for all paths that executed — and for most paths that did
not execute — the checker predicts the energy to be below
the capacity; i.e. the adjacent vertical bars of the same color
should be below the red line if the paths that they represent
executed during the trial run. Paths in a terminating decom-
position that were predicted to be above capacity either did
not execute, or their energy was overestimated by the model
(i.e. a false-positive). For a non-terminating decomposition,
we expect that there exists at least one path for which the
checker predicts the energy to be in excess of capacity; i.e.
from each group of bars of the same color, some vertical bars
(corresponding to the paths that executed) are above the red
line. Paths in a non-terminating decomposition that were
predicted to be below capacity are expected, because it only
takes a single non-terminating path to prevent an execution
from terminating. However, if a non-terminating decompo-
sition has no path whose energy was predicted to be above
capacity, then CleanCut underestimated the energy cost of
at least one non-terminating path (i.e. a false negative).

These expected trends are visible in Figure 8. Every non-
terminating decomposition had at least one predicted non-
terminating path in CF and CEM; and all but one non-termi-
nating instance had such a path in AR. The results for these
benchmarks show that CleanCut successfully identified non-
terminating paths. In RSA, all but seven of the non-terminat-
ing decompositions had at least one path predicted not to
terminate. For the remaining seven, we identified the source
of the underestimate to be inaccurate loop bounds for some
dynamically-bound loops (e.g. division, container search)
that we obtained by profiling on fixed inputs. CleanCut is
likely to perform better with more representative profiling
and on applications with statically-bound loops.

For terminating decompositions, CleanCut correctly iden-
tified that a majority of paths do not exceed the energy capac-
ity of the device. In CEM, CF, and RSA, only a few instances
include paths that exceed the capacity. Such paths either
did not execute during the trial run or were overestimated
by the model. In AR, at least one terminating distribution
has all paths predicted as non-terminating (middle of the
X-axis). Since the energy of the paths in this group is similar
and above capacity, they likely share a common prefix that
was overestimated. This overestimate is likely due to overly
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Figure 8. Predicted and observed non-termination for random
boundary placements.

conservative loop bounds on the loops that implement arith-
metic operations for the pattern matching. The presence
of some paths predicted non-terminating in a terminating
decomposition, is evidence of CleanCut’s conservatism, be-
cause these paths are reported to the programmer.

8.4 Characterization

We evaluated the practicality of using CleanCut by measur-
ing the time to validate a program decomposition using the
checker and find a decomposition using the placer. Table 1
summarizes the complexity of each application, showing
block count, call depth, and maximum path count across all
evaluated decompositions. The table also reports the execu-
tion time of CleanCut’s costliest phases. The block profil-
ing cost varies with block count and averages 36 minutes.
CleanCut incurs this cost only the first time it runs; after
incremental changes, only changed blocks are re-profiled.
We measured the time CleanCut takes to check the manual
placement and to place boundaries in the uninstrumented
code. Evaluating energy expressions occupies the majority
of the run time due to numerical operations on distributions.
The time cost increases with the application size and num-
ber of paths. For example, CleanCut takes longest on RSA,
which has 1.5-2.4x lines of code of the other applications. The



Table 1. Benchmark and analysis time characteristics. Total basic
block counts, maximum path count across all decompositions studied (in-
cluding random), and the maximum call depth are listed. Times are for
one-time block profiling (BB Prof), checking a decomposition (Chkr), and
finding a valid decomposition (Plcr).

App. Characteristics Analysis Time
App. |BBs Paths Call Depth|BB Prof.(m) Chkr. (s) Plcr. (s)

AR 187 298 5 45 30 24
RSA | 197 326 5 51 57 56
CF 91 217 2 23 36 8
CEM| 70 80 2 24 54 11

checker takes longer than the placer, because it computes
more detailed information for the bug report, such as the
CDF of the energy distributions for each path. The running
time of the placer increases with the number of path splits it
has to perform, which decreases with capacitor size.

9 Related Work

We present prior work that relates to CleanCut in the context
of energy-harvesting systems, intermittent execution models,
and energy-aware program analysis.

9.1 Energy-harvesting and Intermittent Computing

Intermittent computing originates with energy-harvesting
hardware. Energy-harvesters can extract energy from e.g.,
radio waves [15, 28, 36, 39, 42, 46], interaction [22, 35, 44], or
light [24, 27]. Fully non-volatile processor architectures [29]
support computing through power failures. Federated power
system [18] improves flexibility by partitioning energy stor-
age. Mayfly [19] improves programability by providing a
notion of time across power failures.

Early energy-ware systems [27, 41] addressed computa-
tion under energy constraints but not intermittence. Emerg-
ing energy-harvesting platforms have lead to systems for
intermittent computing. Dewdrop [7] scheduled short com-
putations to maximize throughput of important tasks and
avoid failures. Mementos [38] preserved progress in long-
running programs on intermittent devices by dynamically
checkpointing volatile state. Dynamic checkpointing was
explored further in later work [3, 4, 20, 32]. Dynamic check-
points that are inserted in advance but collected condition-
ally [3, 4, 20, 32, 38] may generate tasks that are too large
(i.e., exceed device energy capacity) or too small (i.e., over-
provision checkpoints) — problems that CleanCut addresses.
Checkpoints conditioned on energy level [3, 4] require check-
ing the voltage on the capacitor with an ADC or a comparator,
which consumes energy, time, and board space.

Static task systems [10, 30, 37, 47], which CleanCut targets,
keep memory consistent and allow a programmer control
over where computation resumes after a reboot. DINO [30,
37] was the first static task system to observe that check-
pointing volatile state alone is inadequate for correctness
and versioned non-volatile state. In Chain [10] application
is written as a graph of static tasks that communicate over

statically multi-versioned channels. Alpaca [31] privatizes
variables shared across tasks and atomically commits mod-
ified variables at task boundaries. Ratchet [47] combined
checkpointing and idempotent processing [12, 13] under the
assumption that all device memory is non-volatile. Similarly
to CleanCut, Ratchet statically puts boundaries into an appli-
cation to keep state in an intermittent execution consistent.
However, a task in Ratchet can end up arbitrarily long and
may exceed the energy capacity of the device. The lack of
task-sizing in Ratchet makes the work complementary to
CleanCut, which could guide Ratchet’s boundary placement.
Unlike CleanCut, Ratchet does not give the programmer con-
trol over boundary placement, which leaves the risk of a
boundary splitting an atomic operation in the application.
CleanCut is instrumental to adoption of static task systems,
since they may encounter non-termination.

9.2 Energy-aware Compilation and Modeling

Prior work has examined the feasibility of estimating energy
consumption statically [33] and proposed methods based
on constraint satisfaction, e.g. Implicit Path Enumeration
Technique, [45], symbolic representation of input-dependent
code [26], instruction statistics with one-time profiling [23].
The energy model in CleanCut, most closely follows the ap-
proach in [26] in its choice of block granularity and profiling,
but diverges in the choice to expose the full distribution
instead of a worst-case scalar.

Architecture simulators [5, 6, 25, 40] model power dissi-
pation in architectural structures. When hardware descrip-
tion source for the processor is available, core power (but
not full system power) can be obtained from application-
specific symbolic simulation at the RTL level [8]. Unlike
CleanCut, simulation is a dynamic analysis, applying to an
execution, not a program. Work on energy-aware compi-
lation for energy-harvesting systems [34] scheduled short
“one-shot” tasks to not exhaust buffered energy. CleanCut, by
contrast, is a compiler analysis for computations that span
power failures.

10 Conclusion

This work is the first to identify and address the problem of
validating and generating task decompositions of programs
written for an intermittent execution model. Our system,
CleanCut, builds a statistical model of the energy cost of
paths through a program. CleanCut’s checker uses this en-
ergy model along with a model of the energy supply of the
target device to report non-terminating paths in a program
decomposed with task boundaries. CleanCut’s placer itera-
tively generates a task decomposition for a program, insert-
ing task boundaries to prevent non-termination. Having eval-
uated our CleanCut prototype on a real energy-harvesting
device powered by radio waves, we showed that its checker
is accurate and its placer quickly identifies high performance,
valid task decompositions.
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